
OTyper : A Neural Architecture for Open Named Entity Typing

Zheng Yuan and Doug Downey
Department of Electrical Engineering & Computer Science

Northwestern University, Evanston IL 60208, USA
zys133@eecs.northwestern.edu, d-downey@northwestern.edu

Abstract

Named Entity Typing (NET) is valuable for many natural lan-
guage processing tasks, such as relation extraction, question
answering, knowledge base population, and co-reference res-
olution. Classical NET targeted a few coarse-grained types,
but the task has expanded to sets of hundreds of types in
recent years. Existing work in NET assumes that the target
types are specified in advance, and that hand-labeled exam-
ples of each type are available. In this work, we introduce the
task of Open Named Entity Typing (ONET), which is NET
when the set of target types is not known in advance. We pro-
pose a neural network architecture for ONET, called OTyper
, and evaluate its ability to tag entities with types not seen in
training. On the benchmark FIGER(GOLD) dataset, OTyper
achieves a weighted AUC-ROC score of 0.870 on unseen
types, substantially outperforming pattern- and embedding-
based baselines.

1 Introduction
Named Entity Typing (NET) is the task of labeling a given
entity mention in text with a semantic label. NET is valuable
for many natural language processing tasks, such as relation
extraction, question answering, knowledge base population,
and co-reference resolution.

Traditional NET focused on a small set of mutually-
exclusive types, such as person, location, and organization
(Tjong Kim Sang and De Meulder 2003; Carreras, Marquez,
and Padró 2002; Abdul-Hamid and Darwish 2010; Chinchor
and Robinson 1997). More recent work has generalized NET
to much larger type systems that include fine-grained types,
e.g. book, artist, city, and so on (Rabinovich and Klein 2017;
Shimaoka et al. 2016b; Ling and Weld 2012; Yogatama,
Gillick, and Lazic 2015). In fine-grained NET, often the tar-
get types are non-disjoint (“Paris” is both a city and a loca-
tion, for example) and thus fine-grained NET is a multi-label
task, i.e. each mention may be assigned multiple positive la-
bels.

Existing fine-grained NET techniques have a limitation:
they require labeled training mentions for each target type.
For types that are not in the training set—referred to as un-
seen types—NET systems cannot output the labels. This
is a limitation because in many cases, we want to know

Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

whether a given entity belongs to a specific type that is not
present in our limited training dataset. Learning whether an
entity belongs to an unseen type is an instance of “zero-
shot learning,” where no training examples exist for a given
output label (Palatucci et al. 2009; Socher et al. 2013;
Chang et al. 2008). While existing hypernym discovery tech-
niques can identify whether a given phrase belongs to a
type, hypernym discovery is context insensitive, whereas
NET is context sensitive. For example, given the sentence
“I went to Chicago last year,” hypernym discovery would
output all possible types of “Chicago” (city, band, movie,
etc.). Whereas in NET we must only assign types that are
correct for “Chicago” in the given context, e.g. city and lo-
cation. Unsupervised Named Entity Recognition (Huang et
al. 2017) is context-sensitive and in principle can handle
entities of unseen types, but these techniques require mu-
tually exclusive entity categories—i.e. they cannot apply to
the multi-label setting encountered in fine-grained NET.

In this paper, we introduce the task of Open Named En-
tity Typing (ONET), which is fine-grained NET when the
set of target types is not known in advance. We propose a
novel neural architecture for ONET. The intuition behind
our approach is simple: we represent mentions and types
in our model using word embeddings pre-trained on unla-
beled text, and leverage regularities in the embedding space
to extend to unseen types. Specifically, our model projects
the embeddings of mentions and types into a common space.
We train the model such that in the common space, the repre-
sentations of correct types are close to the mention represen-
tation, while the representations for incorrect types are far
away. Our hypothesis is that regularities in the pre-trained
embedding space will allow this approach to extend to un-
seen types. That is, if our model learns to map mentions
of the type “musician” to be close to the representation for
the word “musician,” it will also map mentions of the type
“drummer” to be close to the representation of the word
“drummer,” even if the latter type never appears in train-
ing. Our architecture extends previous work (Shimaoka et
al. 2016b) by adding a new component, type embeddings,
and a method for comparing the type embedding to a given
mention embedding. In addition, our model is able to incor-
porate mention- and pattern-based features as optional com-
ponents.



We refer to our model as OTyper1. We evaluate OTyper on
a common benchmark NET dataset, FIGER(GOLD) (Ling
and Weld 2012) and MSH-WSD dataset(Jimeno-Yepes,
McInnes, and Aronson 2011). The results show that OTyper
outperforms two baseline models and achieves weighted av-
erage ROC AUC score of 0.870 and 0.780 on unseen types
for FIGER(GOLD) and MSH-WSD. We also analyze which
factors drive the system’s performance, finding that the pres-
ence of training types that are more similar to an unseen tar-
get type improves accuracy on that type.

In summary, our contributions include:
• We introduce a new task of Open Named Entity Typing

(ONET), which is fine-grained NET when the set of target
types is not known in advance.

• We propose a neural network model, OTyper, for the
ONET task and experimentally demonstrate that the tech-
nique outperforms baseline approaches on unseen types.
The rest of this paper is organized as follows. In section

2, we cover previous work in NET. We present our OTyper
model in Section 3 and evaluate it in section 4. Section 5
concludes.

2 Related Work
Named Entity Typing is a long-standing task in Natural Lan-
guage Processing (Grishman and Sundheim 1996; Collins
and Singer 1999; Elsner, Charniak, and Johnson 2009;
Ratinov and Roth 2009; Ritter et al. 2011; Kuru, Can, and
Yuret 2016). Most work in NET is performed in the context
of the Named Entity Recognition (NER) task, which includes
NET as a subtask. In NER, systems must first find and de-
limit entity mentions, and then perform NET, i.e. assign each
mention to a type. Using a variety of supervised approaches,
existing NET methods can achieve high accuracy and recall.
Most of these systems only deal with traditional NET over
three categories: person, location, organization.

Many end tasks such as relation extraction and ques-
tion answering can benefit from finer-grained entity typing,
which has become a focus in recent years. Unlike traditional
NET, fine-grained NET considers hundreds or thousands of
types, and each entity mention can be assigned to more than
one type. Ling and Weld (2012) introduced 113 entity types
derived from Freebase and released a dataset, FIGER, now
a commonly-used benchmark for fine-grained NET. They
used semantic features to train a multi-instance multi-label
distant supervision classifier on FIGER. In this paper, we
use FIGER as our evaluation dataset. Lee et al. (2006) de-
fined 147 fine-grained named entity types and used a CRF
on fine grained NET for question answering. Yogatama et
al. (2015) introduced embedding methods that use a rank-
ing loss and learn a joint representation of features and la-
bels, which allows for information sharing among related
labels. Rabinovich et al. (2017) considered a large number
of types and applied a linear model for fine-grained NET.
Shimaoka et al. (2016a) proposed the first model for fine-
grained entity typing that learns to recursively compose rep-
resentations for the context of each entity using an atten-

1https://github.com/Websail-NU/OTyper/tree/AAAI-18

tion model. Shimaoka et al. (2016b) combined the attention
model with mention features and hierarchical label-sharing
parameters in a NET system, and achieved the current state-
of-the-art result on the FIGER(GOLD) dataset. By adopting
a universal schema approach, Yao et al. (2013) operates over
the union of all types from its input sources, and is able to
classify over 16,000 types. However, all these methods as-
sume a pre-defined a set of fine-grained types that is known
at training time—they are not applicable to ONET, where
the target types do not appear in the training dataset.

Huang et al. (2017; 2016) proposed an unsupervised
entity-typing framework by combining symbolic and distri-
butional semantics. They use domain knowledge bases as
an additional data resource. Their approach creates a knowl-
edge graph and knowledge representation based on domain
knowledge base, and then clusters entity embeddings and
named entities. Their system produces only one type label
for each mention, while in ONET each mention can cor-
respond to many types. Also, domain knowledge bases are
not always available, which is a limitation for their system.
By contrast our OTyper approach does not use a knowledge
base, only pre-trained embeddings.

Similar to named entity typing, hypernym discovery
(Snow, Jurafsky, and Ng 2005; Seitner et al. 2016) also la-
bels entities with their hypernyms. Hypernym discovery is
the task of, given an NP e, finding a set of NPs ci such that
each ci is a hypernym of e (Ritter, Soderland, and Etzioni
2009). Hypernym discovery is often powered by Hearst pat-
terns (Hearst 1992), which we also employ as features in
OTyper . The primary difference between our ONET task
and hypernym discovery is that ONET is context sensitive—
we must not only assign types to each entity name, but also
determine which of those types are relevant to the particular
sense of the entity name used in a given context.

3 OTyper Architecture
We now formally define Open Named Entity Typing
(ONET), and present our OTyper architecture for the task.

3.1 Problem Definition
As in traditional NET, in ONET we take as input a set of
mentions. Each mention is an occurrence of a named entity
in text, along with its surrounding context. We are also given
a set of target types, and the the task is to associate each men-
tion with its correct types. An ONET system is trained on
a labeled dataset of annotated mentions. The key difference
between ONET and NET is that in ONET, some of the target
types (i.e. the test types) may not occur at all in the training
phrase. We use the symbol ti to denote a type in training or
testing, and mi to denote a mention. Each mention mi con-
tains two parts: the entity ei and its textual context on the left
and right, referred to as cli and cri. In our remaining nota-
tion, we use lowercase letters for scalars, bold lowercase for
vectors and uppercase letters for matrices and constants. We
define seen types to be the types in the training dataset. Un-
seen types are those that do not exist in training dataset but
are found in test dataset. While in principle test types may
include both seen types and unseen types, in our experiments
we focus on unseen types.



3.2 Overview
OTyper outputs a vector for each mi, where each element
in the vector is a probability estimate that mi belongs to
a type. Our intuition is that if mention embeddings are ap-
propriately mapped into a common space with type embed-
dings, then the mention embeddings will be nearby the cor-
rect type embeddings and far away from the incorrect type
embeddings—even for types that do not explicitly occur in
the training set.

Figure 1 shows the neural network architecture of OTyper.
The number of dimensions is listed in parentheses after the
name. The arrows represent fully interconnected weight ma-
trices with one exception—the mapping from the mention
and type representation to the dot product is a dot product
operation of these two representations. Also, OTyper uses
a fixed identity matrix for the weights from the type em-
bedding to the type representation. OTyper has a single lo-
gistic function output for each <mention, type> pair. Thus,
OTyper can have a different number of types in training and
testing phase, which is critical for ONET. OTyper maps the
mention embedding into a common space with the type em-
bedding and is trained to minimize the dot-product distance
between the mention embedding and each of its correct type
embeddings.

The high level mathematical formulation of OTyper is as
follows:

arep = [fm-emb, fm-fet] ∗Wmention (1)

brep = ft-emb ∗Wtype (2)

d = arep · brep (3)

l = [d, fp-fet] ∗Wl + b (4)

ŷ = sigmoid(l) (5)

OTyper concatenates the mention features (fm-fet) with the
mention embedding (ffet) and projects it into the common
space in Equation 1. Equation 2 projects the type embed-
ding, ft-emb, into the common space. As mentioned above,
in OTyper, the type projection is an identity transformation;
exploring alternative transformations is an item of future
work. Then, the dot product between the projected mention
and type is computed in Equation 3. Pattern features vec-
tor (fp-fet) are concatenated with the dot product. In equation
4, the concatenation vector is then fed into a hidden layer,
which outputs a scalar. The last layer transforms the hidden
layer output with a logistic function, to produce a probabil-
ity estimate that the given mention is of the given type. To
train the model, OTyper minimizes the cross-entropy loss on
the training data.

Note that in the training phase, we feed seen type embed-
dings into OTyper , while during the test phrase, we feed
target types which can include unseen types.

In 3.3 and 3.4, we introduce mention and type embed-
dings. The features that OTyper uses are illustrated in 3.5.

3.3 Mention embedding
The mention embedding in OTyper contains two parts: an
entity embedding and a context embedding. OTyper adopts
the mention embedding approach proposed for NET in (Shi-
maoka et al. 2016b), which we describe in this section.

Our entity embedding simply averages the individual
word embeddings for the entity, as shown in equation 6.
m

(j)
i denotes the jth word of ith mention. mli is the num-

ber of words of ith mention. The function emb(·) returns the
word embedding.

fe-emb(mi) =
1

mli

mli∑
j=1

emb(m
(j)
i ) (6)

To generate a context embedding, OTyper trains two bi-
LSTMs (Graves 2012) on both sides of context. An attention
model is applied to the output states of the bi-LSTMs to get
weighted summations on both sides, which are concatenated
for form the context embedding.

Equations 7 to 10, from (Shimaoka et al. 2016b), describe
how our mention embedding is computed. Equations 7 to 9
formulate how OTyper computes its context embedding. We
use −→o l

ij and ←−o l
ij to denote the bidirectional output states

of bi-LSTMs for the jth word in the left side context of
mi, j ∈ {1, . . . , C}, with analogous quantities for the right
side. To get the attention weights in Equation 9, the atten-
tion model trains a two-layer feed-forward neural network
as in Equations 7 and 8. The scalar alij is the weight for the
left context output state for the jth word. The right context
scalars are analogous. The context embedding is shown in
Equation 10.

elij(clij) = tanh(We ∗
[−→o l

ij←−o l
ij

]
) (7)

ãlij = exp(Wa ∗ elij) (8)

alij =
ãlij∑C

j=1(ã
l
ij + ãrij)

(9)

fc-emb(cli, cri) =

C∑
j=1

(alij ∗
[−→o l

ij←−o l
ij

]
+ arij ∗

[−→o r
ij←−o r
ij

]
)

(10)
The mention embedding (Equation 11) is the concatena-

tion of the entity and context embedding.

fm-emb(mi, cli, cri) = [fe-emb(mi), fc-emb(cli, cri)] (11)

We also tried the two alternative context models proposed
in (Shimaoka et al. 2016b), one based on averaging the con-
text embeddings and the other based on LSTMs without at-
tention. We found the attention embedding performed the
best, so we use it in OTyper.



entity	
embedding	 (300)

context	embedding	
(600)

mention	
features	(50)

type
representation	(300)

mention embedding

dot	product	 (1) pattern-based	features	
(6)

sigmoid	output	 (1)

mention
representation	(300)

type
embedding	 (300)

Figure 1: Neural architecture for OTyper. The number of neuronal units is provided for each component in parentheses

3.4 Type embeddings
In equation 12, OTyper computes type embeddings by sim-
ply averaging the word embeddings of the words comprising
the type name:

ft-emb(ti) =
1

tli

tli∑
j=1

emb(t
(j)
i ) (12)

where t
(j)
i denotes the jth word of type ti. tli is the number

of words in ti.

3.5 Features
Shimaoka et al. (2016b) showed substantial F1 score im-
provement in NET by incorporating mention features such
as syntactic features, word shape features and topic features.
We also use these mention features in OTyper. Following
(Shimaoka et al. 2016b), we represent mention features as
binary vectors and use a trainable linear projection to map
the binary vector to lower dimension. We use fm-fet(mi) to
represent mention features for mention i.

Pattern-based features are helpful for ONET. For exam-
ple, given an entity-type pair, <e, t>, if the number of tex-
tual occurrences of “e is a t” is low in a large corpus, it
is less likely that e is of type t. We use two kinds of pat-
tern based features in OTyper: entity-type features and type-
only features. We use a set of hypernym patterns applied
to a large corpus taken from the web-is-a database (Seitner
et al. 2016). We compute features based on the number of
pattern matches for different entities and types. Entity-type
features capture the pattern matching information of a spe-
cific <e, t> pair. Specifically, entity-type features include:
the number of matches, the number of distinct matched pat-
terns, and the number of matched URL domains. Type-only
features marginalize entity-type features over types, and can

be viewed as a prior over types — i.e. types that appear in
more patterns may be the type labels that OTyper should be
output more often, all else being equal. Equations 13, 14 are
the formulas for entity-type features (fe-t-fet) and type-only
features(ft-o-fet). nm, np and nu are the number of matches,
the number of distinct matched patterns and the number of
URL domains for <e, t> separately. Pattern based features
(in Equation 15) combines entity-type features with type-
only features.

fe-t-fet(ei, ti) = [nm(ei, ti), np(ei, ti), nu(ei, ti)] (13)

ft-o-fet(ti) =
∑
i

fe-t-fet(ei, ti) (14)

fp-fet(ei, ti) = [fe-t-fet(ei, ti), ft-o-fet(ti)] (15)

4 Experiments
This section evaluates OTyper and answers three questions:
• How well can OTyper label unseen types?
• How much do similar training types help—does unseen

type accuracy correlate with how similar the training type
embeddings are to the unseen type embeddings?

• How much does each feature impact the accuracy of
OTyper?

4.1 Experimental setup
We evaluate OTyper on two datasets: FIGER(GOLD) and
MSH-WSD.

• FIGER(GOLD) is a benchmark dataset for fine-grained
NET. The training and development FIGER(GOLD) data
were generated from Wikipedia text (Ling and Weld



2012). The FIGER(GOLD) test dataset consists of manu-
ally annotated newspaper articles. Each mention has 113
binary type labels, where the types were derived from
Freebase.

• MSH-WSD is a word sense disambiguation dataset that
was automatically collected from the Unified Medical
Language System (UMLS) Metathesaurus and the manual
MeSH indexing of MEDLINE (Jimeno-Yepes, McInnes,
and Aronson 2011). We type each MSH-WSD mention
using UMLS tags. Specifically, we define the correct
types for a mention to be all of its ancestors in the UMLS
taxonomy tree. We randomly select 80% of the mentions
for training, 10% for development and 10% for test. There
are 1387 different types in MSH-WSD.

We use published mention features for the
FIGER(GOLD) dataset from (Shimaoka et al. 2016b).
There are no mention features available for MSH-WSD.
The pattern features used in our experiments are extracted
from the web-is-a database (Seitner et al. 2016). Mention
and type embeddings are taken from pre-trained GloVe-
840B (Pennington, Socher, and Manning 2014) word
embeddings.

For all experiments, the dimension of the common space
is 300. As mentioned above, we set Wtype to be the iden-
tity matrix. The rest of hyper-parameters are the same as in
(Shimaoka et al. 2016b). The projection of the mention fea-
tures is 50 dimensional. The Adam optimizer (Kingma and
Ba 2014) with a learning rate 0.001 is applied to minimize
the loss. The model is trained for 5 epochs with batch size
1,000. Dropout with keep probability of 0.5 is applied to the
mention embeddings and mention features. The context win-
dow size is 10. We present the test performance of the model
that performed best of the development set.

Our evaluation metric is weighted AUC-ROC score,
which computes an AUC-ROC score for each type and then
averages the scores weighted by the type frequency.

4.2 Unseen Type labeling
To evaluate how well OTyper labels unseen types, we split
test types into 10 parts and do 10-fold cross-validation on
the types. For each fold, only type labels other than the test
types are utilized in the training and development set.

We compare OTyper with two baseline models. Pattern-
based methods are a canonical approach for identifying hy-
pernym relations. So, our first baseline is a pattern-based
model. It uses the number of matches in web-is-a for <e,t>
as its score (Sang 2007), and forms a relatively strong base-
line. The second baseline is based on word embeddings. It
trains a logistic regression model to classify the vector dif-
ference between the entity embedding for e and the type em-
bedding for t. Vector differences between embeddings have
been shown to reflect relation information (Mikolov, Yih,
and Zweig 2013). In addition, to provide an upper bound
on accuracy, we also evaluate OTyper in a fully supervised
setting in which all types are available in training.

Table 1 presents the results on FIGER(GOLD). The re-
sults show that using only pattern-based features or em-
beddings cannot solve the ONET task, because ONET is

Model AUC-ROC
Pattern baseline 0.639

Embedding baseline 0.413
OTyper 0.870

Supervised upper bound 0.943

Table 1: Unseen type weighted AUC-ROC comparison on
FIGER(GOLD). OTyper outperforms the baselines.

context-sensitive whereas the pattern features and embed-
dings are context-insensitive. OTyper achieves an AUC-
ROC of 0.870 and outperforms the two baselines by sub-
stantial margins. The pattern baseline is better than the em-
bedding baseline in these experiments. The supervised upper
bound model gets an AUC-ROC score of 0.943. It is notable
that OTyper can score relatively close to the performance
of the supervised model, given that OTyper must solve the
much more challenging ONET task in which the test types
do not occur in the labeled training examples.

Model AUC-ROC
Pattern baseline 0.005

Embedding baseline 0.350
OTyper 0.780

Supervised upper bound 0.891

Table 2: Unseen type-weighted AUC-ROC comparison on
the MSH-WSD dataset. OTyper outperforms the baselines.

Table 2 shows the results on MSH-WSD. Again, OTyper
achieves much higher weighted type AUC-ROC score com-
pared to the baselines. However, the AUC-ROC is not as
high as in FIGER(GOLD) because MSH-WSD has a much
higher number of types than FIGER(GOLD), and also lacks
mention features, which makes the ONET task harder than
in FIGER(GOLD). Further, since MSH-WSD type comes
from biomedical domain, they rarely show up in the Web
corpus used to form the web-is-a database. Thus, pattern-
based features are sparse. In fact, out of 51 million <e, t>
pairs in MSH-WSD only 817 of them have non-zero pat-
tern matches. This implies that the pattern-based features are
not informative here, and is the reason that the pattern-based
baseline gets almost zero AUC-ROC score on MSH-WSD
data. Due to the feature limitations of MSH-WSD, we only
use FIGER(GOLD) in the following experiments.

Note that although OTyper achieves high weighted type
AUC scores, if we evaluate on an F1 metric over unseen
types, OTyper achieves a score of 0.26. This indicates that
OTyper works well for ranking the unseen types, but not that
well for classification.

4.3 Influence of training types
This subsection attempts to explain the performance of
OTyper by analyzing how much the unseen type AUC-ROC
correlates with how similar the training type embeddings are
to the target unseen type embedding. We use cosine similar-
ity in Equation 16 to measure the distance between types:



cos-similarity(a,b) =
a · b

‖a‖2‖b‖2
(16)

For these experiments, we focus on the 11 of our 41 test
types that occur at least ten times in our test dataset. For each
of the 11 types, we hold the type out from training and de-
velopment sets and train three different OTyper models. In
the first model, the training and development types contain
all other types other than the test type. We name this model
All. In the second and third models, the three most and least
similar types from the test type are removed from the train-
ing and development datasets. We call them top-3 and bot-3
model. If OTyper is utilizing similar types to the test type in
the training set as a source of information, we would expect
top-3, which removes the most similar types, to substantially
underperform bot-3, which removes dissimilar types.

Type name All Top-3 Bot-3
location 0.739 0.692 0.742
person 0.885 0.82 0.897

organization 0.880 0.819 0.811
city 0.917 0.856 0.921

country 0.857 0.787 0.893
company 0.849 0.611 0.842

sports team 0.862 0.827 0.873
athlete 0.957 0.897 0.953

building 0.929 0.885 0.894
educational institution 0.888 0.720 0.904

time 0.793 0.863 0.801
Average 0.869 0.798 0.866

Table 3: Performance of OTyper when holding out types
that are similar (Top-3) or dissimilar (Bot-3) to the target
type, compared to keeping all training types (All). We report
AUC-ROC on the FIGER(GOLD) dataset. On average, re-
moving similar types hurts performance, whereas removing
dissimilar types has negligible impact.

Table 3 shows the type AUC-ROCs of all three models.
On average, bot-3 achieves 0.068 higher AUC-ROC score
than top-3. The result suggests that to predict unseen types,
the similar types in the training data are more informative
than dissimilar types. We also observed that average AUC-
ROC of All is almost the same with bot-3. So, dissimilar
types do not affect unseen type prediction.

4.4 Feature analysis
This section investigates whether having mention- and
pattern-based features is helpful in predicting unseen types.
We remove each feature from our model separately and eval-
uate our model using 10 fold cross validation as in 4.2. The
results are summarized in Table 4.

Table 4 shows that removing any of the features results
in some AUC-ROC decrease. AUC-ROC does not decease
very much when mention features are removed, which is
somewhat surprising. As additional analysis, we find that
when mention features are removed, the AUC-ROCs in-
creases for 18 unseen types, decreases for 21 unseen types,

Model Weighted AUC-ROC
OTyper 0.870

OTyper (- mention features) 0.863
OTyper (- entity-type features) 0.842
OTyper (- type-only features) 0.848

Table 4: Impact of features on the FIGER(GOLD) dataset.
The pattern-based features are most valuable for this dataset.

and remains unchanged for the other two. Thus, there ap-
pears to be no clear advantage in using mention features.
The pattern-based features are found to be more informative
for FIGER(GOLD) dataset.

4.5 Supervised setting
Our focus is on ONET in which types can be unseen. In a su-
pervised setting, where all types are seen, we would expect
OTyperperforms similar to that of the recent state-of-the-art
model in (Shimaoka et al. 2016b). To verify this, we evalu-
ate OTyper against the model from (Shimaoka et al. 2016b)
(NFGEC for short) on FIGER(GOLD) using the same eval-
uation set-up in that work, i.e. strict accuracy, loose macro
F1, and loose micro F1 scores. For this experiment, all 113
types are seen types.

For NFGEC, we use the attentive context encoder with
mention features, which is the setting that achieves the high-
est FIGER(GOLD) accuracy and F1 scores in (Shimaoka et
al. 2016b). We use two feature settings for OTyper. The first
setting includes only mention features. This setting uses ex-
actly the same input data as NFGEC, i.e. mention embed-
dings, context embeddings and mention features. The sec-
ond setting includes all features in OTyper, i.e. mention,
entity-type and type-only features. Table 5 shows the re-
sults. When OTyper uses the same input data with NFGEC,
OTyper gets slightly lower accuracy and F1 scores than
NFGEC. When all features are included, OTyper gets sim-
ilar accuracy and F1 scores with NFGEC. Overall, OTyper
performs comparably to NFGEC in the supervised setting.

F1 F1
Model Acc. Macro Micro

NFGEC 0.597 0.790 0.754
OTyper (mention features) 0.584 0.776 0.752

OTyper (all features) 0.595 0.779 0.759

Table 5: Comparison in the supervised setting. OTyper
achieves comparable F1 to the state-of-the-art NFGEC.

5 Conclusion
In this paper, we introduced the task of Open Named Entity
Typing (ONET), which is NET when the set of target types
is not known in advance. We proposed OTyper, a neural net-
work architecture for ONET. OTyper relies on type embed-
dings in order to extend to unseen types. The experimen-
tal results demonstrate that on unseen types OTyper outper-
forms two baseline models and achieves a weighted AUC-



ROC of 0.870 on the benchmark FIGER(GOLD) dataset,
and a score of 0.78 on the MSH-WSD dataset. Our results
can serve as a baseline for future ONET systems. Finally, our
analysis revealed that similar training types provide more in-
formation for unseen type prediction than dissimilar training
types do.

Acknowledgments
This work was supported in part by NSF Grant IIS-1351029
and the Allen Institute for Artificial Intelligence. We thank
Oren Etzioni for suggesting we look at the ONET task. We
also thank Mohammed Alam, David Demeter, Jared Fernan-
dez, Thanapon Noraset, and Yiben Yang for helpful discus-
sion.

References
Abdul-Hamid, A., and Darwish, K. 2010. Simplified feature
set for arabic named entity recognition. In Proceedings of
the 2010 Named Entities Workshop, 110–115. Association
for Computational Linguistics.
Carreras, X.; Marquez, L.; and Padró, L. 2002. Named en-
tity extraction using adaboost. In proceedings of the 6th
conference on Natural language learning-Volume 20, 1–4.
Association for Computational Linguistics.
Chang, M.-W.; Ratinov, L.-A.; Roth, D.; and Srikumar, V.
2008. Importance of semantic representation: Dataless clas-
sification. In AAAI, volume 2, 830–835.
Chinchor, N., and Robinson, P. 1997. Muc-7 named entity
task definition. In Proceedings of the 7th Conference on
Message Understanding, volume 29.
Collins, M., and Singer, Y. 1999. Unsupervised models for
named entity classification. In Proceedings of the joint SIG-
DAT conference on empirical methods in natural language
processing and very large corpora, 100–110.
Elsner, M.; Charniak, E.; and Johnson, M. 2009. Structured
generative models for unsupervised named-entity clustering.
In Proceedings of Human Language Technologies: The 2009
Annual Conference of the North American Chapter of the
Association for Computational Linguistics, 164–172. Asso-
ciation for Computational Linguistics.
Graves, A. 2012. Supervised sequence labelling. Supervised
sequence labelling with recurrent neural networks 5–13.
Grishman, R., and Sundheim, B. 1996. Message under-
standing conference-6: A brief history. In COLING 1996
Volume 1: The 16th International Conference on Computa-
tional Linguistics, volume 1.
Hearst, M. A. 1992. Automatic acquisition of hyponyms
from large text corpora. In Proceedings of the 14th confer-
ence on Computational linguistics-Volume 2, 539–545. As-
sociation for Computational Linguistics.
Huang, L.; May, J.; Pan, X.; and Ji, H. 2016. Building a
fine-grained entity typing system overnight for a new x (x=
language, domain, genre). arXiv preprint arXiv:1603.03112.
Huang, L.; May, J.; Pan, X.; Ji, H.; Ren, X.; Han, J.; Zhao,
L.; and Hendler, J. A. 2017. Liberal entity extraction: Rapid

construction of fine-grained entity typing systems. Big Data
5(1):19–31.
Jimeno-Yepes, A. J.; McInnes, B. T.; and Aronson, A. R.
2011. Exploiting mesh indexing in medline to generate a
data set for word sense disambiguation. BMC bioinformatics
12(1):223.
Kingma, D., and Ba, J. 2014. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.
Kuru, O.; Can, O. A.; and Yuret, D. 2016. Charner:
Character-level named entity recognition. In COLING, 911–
921.
Lee, C.; Hwang, Y.-G.; Oh, H.-J.; Lim, S.; Heo, J.; Lee, C.-
H.; Kim, H.-J.; Wang, J.-H.; and Jang, M.-G. 2006. Fine-
grained named entity recognition using conditional random
fields for question answering. In AIRS, 581–587. Springer.
Ling, X., and Weld, D. S. 2012. Fine-grained entity recog-
nition. In AAAI.
Mikolov, T.; Yih, W.-t.; and Zweig, G. 2013. Linguistic
regularities in continuous space word representations. In hlt-
Naacl, volume 13, 746–751.
Palatucci, M.; Pomerleau, D.; Hinton, G. E.; and Mitchell,
T. M. 2009. Zero-shot learning with semantic output
codes. In Advances in neural information processing sys-
tems, 1410–1418.
Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In EMNLP, vol-
ume 14, 1532–1543.
Rabinovich, M., and Klein, D. 2017. Fine-grained entity
typing with high-multiplicity assignments. arXiv preprint
arXiv:1704.07751.
Ratinov, L., and Roth, D. 2009. Design challenges and mis-
conceptions in named entity recognition. In Proceedings of
the Thirteenth Conference on Computational Natural Lan-
guage Learning, 147–155. for Computational Linguistics.
Ritter, A.; Clark, S.; Etzioni, O.; et al. 2011. Named en-
tity recognition in tweets: an experimental study. In Pro-
ceedings of the Conference on Empirical Methods in Natural
Language Processing, 1524–1534. Association for Compu-
tational Linguistics.
Ritter, A.; Soderland, S.; and Etzioni, O. 2009. What is this,
anyway: Automatic hypernym discovery. In AAAI Spring
Symposium: Learning by Reading and Learning to Read,
88–93.
Sang, E. T. K. 2007. Extracting hypernym pairs from the
web. In Proceedings of the 45th annual meeting of the ACL
on interactive poster and demonstration sessions, 165–168.
Association for Computational Linguistics.
Seitner, J.; Bizer, C.; Eckert, K.; Faralli, S.; Meusel, R.;
Paulheim, H.; and Ponzetto, S. P. 2016. A large database
of hypernymy relations extracted from the web. In LREC.
Shimaoka, S.; Stenetorp, P.; Inui, K.; and Riedel, S. 2016a.
An attentive neural architecture for fine-grained entity type
classification. arXiv preprint arXiv:1604.05525.
Shimaoka, S.; Stenetorp, P.; Inui, K.; and Riedel, S. 2016b.



Neural architectures for fine-grained entity type classifica-
tion. arXiv preprint arXiv:1606.01341.
Snow, R.; Jurafsky, D.; and Ng, A. Y. 2005. Learning syntac-
tic patterns for automatic hypernym discovery. In Advances
in neural information processing systems, 1297–1304.
Socher, R.; Ganjoo, M.; Manning, C. D.; and Ng, A. 2013.
Zero-shot learning through cross-modal transfer. In Ad-
vances in neural information processing systems, 935–943.
Tjong Kim Sang, E. F., and De Meulder, F. 2003. Introduc-
tion to the conll-2003 shared task: Language-independent
named entity recognition. In Proceedings of the seventh con-
ference on Natural language learning at HLT-NAACL 2003-
Volume 4, 142–147. Association for Computational Linguis-
tics.
Yao, L.; Riedel, S.; and McCallum, A. 2013. Universal
schema for entity type prediction. In Proceedings of the
2013 workshop on Automated knowledge base construction,
79–84. ACM.
Yogatama, D.; Gillick, D.; and Lazic, N. 2015. Embedding
methods for fine grained entity type classification. In ACL
(2), 291–296.


