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ABSTRACT

This dissertation presents: a method for creating black-and-white illustrations

and caricatures of human faces from source photographs; and series of perceptual

studies aimed at evaluating the effectiveness of the resulting images relative to

photographs. The illustrations are generated by superimposing two images: a

thresholded image of the output of a computational brightness model, and a thresh-

olded luminance image. In addition, a new interactive technique is demonstrated

for deforming images of faces to create caricatures that highlight and exaggerate

representative facial features. The photographs and black-and-white illustrations

are evaluated via psychophysical studies to assess speed and accuracy in learn-

ing and recognition tasks. These studies show that the facial illustrations and

caricatures generated using these techniques are as effective as photographs in

the recognition tasks. In the learning studies, tasks involving illustrations or

caricatures were performed significantly faster than the same tasks were performed

with photographs. The recognition invariance effect is used as an experimental

probe in a functional magnetic resonance imaging (fMRI) experiment. The results

of this experiment indicate that viewers may process illustrations differently from

photographs.
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CHAPTER 1

INTRODUCTION

The intent of both Non-Photorealistic Rendering (NPR) and Photorealistic

Rendering is to visually communicate information. The Photorealistic Rendering

community creates images by simulating the physics of light in mathematically

modeled scenes. The goal of Photorealistic Rendering is to create images that are

indistinguishable from photographs of real world scenes. In contrast, NPR is a

newer and in many ways broader field whose community possess an assortment of

image creation goals. NPR images are created using a variety of methods from the

simulation of traditional artistic media to completely ad hoc. The only unifying

principle in NPR is that all NPR images are created in order to stimulate the

human visual system.

One of the most important skills for an artist is to learn is choosing the correct

medium for a given subject. Artists make these choices guided by considerations

such as aesthetic appeal and the effectiveness of the medium in communicating

the required visual message. The directors of feature films integrate NPR methods

with traditional film media to produce effects never before possible. Nearly every

3D rendering package now has a cartoon shading plug-in that empowers non-artists

with the ability to create images in ways only professional artists were once able.

NPR gives the graphics community freedom to choose media in addition to a camera

for creating images.

A common assumption in the graphics community is that NPR involves simu-

lating natural artistic media. This assumption is not surprising, because the first

research in the field focused on reproducing traditional art forms, such as pen and

ink, watercolor, and oil on canvas. Technology development in any field first seeks
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Figure 1.1. Images demonstrating the difference between photographs and
Non-Photorealistically rendered computer graphics images.

to imitate the previous mode of working. Thus, NPR seems to be following the

usual development scheme. NPR currently embraces a wider scope of research. For

example, a recent trend in NPR research is interactive NPR techniques. Current

work focuses on the detection and rendering of feature lines to communicate shape.

Silhouettes, surface and texture boundary lines, as well as creases are important

for communicating the shape of an object.

The goal of generating computer images that are indistinguishable from pho-

tographs is essential for a host of applications including design, marketing, and the

entertainment industry. In many applications, however, a non-photorealistic image

has advantages over a photorealistic image. NPR images omit extraneous detail,

focus attention on relevant features, clarify, simplify, and disambiguate shape, and

show hidden parts. An example of a photograph and an architectural rendering are

shown in Figure 1.1.

The control of detail in an image for purposes of communication is becoming

the hallmark of NPR images. Often this control of image detail is combined with

stylization to evoke the perception of complexity in an image without an explicit

representation. NPR images also provide a more natural vehicle for conveying
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information at different levels of abstraction and detail. Some additional occasions

when a NPR image has an advantage are listed below.

1. Image Reproducibility – In a technical journal printed in black and white,

fully shaded 3D geometry may not print well. For example photographic

images do not copy or fax as well as line art images.

2. Medical Visualization – Researchers are focusing on providing NPR algo-

rithms, which can be manipulated interactively, for real time visualizations

of volume data. A good example is the visualization of electric fields inside

the human body.

3. Communication of Abstract Ideas – The human visual system expects realisti-

cally rendered characters to behave realistically. Therefore, non-photorealistic

animation can be used to express ideas beyond the physical and logical norm,

in a way that is acceptable to a general audience. An example of this is force

diagrams used in physics textbooks.

4. Evoking the Imagination – Simple line drawings can communicate abstract

ideas in ways that a photograph cannot. In a photorealistic image, everything

in the scene is rendered in fine detail, leaving little to the imagination. In

comparison, by not depicting every detail, a non-photorealistic image allows

the viewer to share in the interpretive process.

5. Animation – When creating an animation it is necessary to focus the attention

of the audience on the relevant actions and elements in the scene. A viewer

inspecting the fine details of a photorealistic scene can miss the big picture.

Most non-photorealistic techniques employ an economy of line, limiting the

detail in a scene, which makes directing the attention of the viewers easier for

an animator.

6. Compression – By not depicting all the detail required for photorealistic

images, non-photorealistically rendered computer graphics images typically
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take less time to create, can be rendered to the screen faster, and use less

storage space. For example, half-tone images yield the same shape from

shading cues as traditionally rendered computer graphics images when viewed

from a distance. However, the half-tone images require between one tenth and

one one-hundredth of the storage space [4, 38, 79].

7. Communication of Design or Process Completeness – Photorealistic rendering

implies an exactness and perfection that may overstate the fidelity of the

simulated scene to a photograph. NPR can aid a viewer in understanding that

the image they see is only an approximate depiction of a scene. An excellent

example of this phenomena is architectural rendering. Architects have found

that on-site building conditions and variations in regional building codes can

lead to last minute changes in building plans. If clients are shown realistic

images of the proposed building these last minute changes can come as a

shock, leading to angry, disappointed clients. However, if the clients are shown

Non-Photorealistic images of the proposed building clients tend to accept the

design process as incomplete and the plans as changeable. Therefore, the

clients usually accept on-site changes.

The early adoption and subsequent interest in Photorealistic Rendering by the

graphics community is most likely due to the “mission statement” of Photorealistic

Rendering: “Create an image that is indistinguishable from a photograph.” This

mission statement gives Photorealistic Rendering a visual “Turing test”, and an

easily defined metric for a successful image. Non-Photorealistic Rendering does

not have a single mission statement. Instead, researchers are pursuing a number

of image creation goals. The goals of NPR include simulating traditional artistic

media, understanding the human visual system, communicating effectively with low

bandwidth, abstracting images, enhancing learning, and improving user interaction.

In the computer graphics community, rendering is the process by which a virtual

scene is converted into an image. Photorealistic rendering has come to mean images’

depicting what is real based on physical simulations. While physical phenomenon
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are objective and relatively predictable, photorealism is inherently costly due to

the vast quantity of data that must be specified and processed. The main difficulty

in striving for photorealism is that the physical world is complex. To render a

computer-modeled scene realistically, the scene must approximate its real-world

counterpart to a high degree of accuracy, resulting in extremely complex geometry.

Therefore, the realistic depiction of complex objects always involves a series of trade

offs based on the image creator’s time and computational budget.

Images created using a photorealistic rendering process can be objectively mea-

sured or visually compared to a photograph of the physical process being simulated.

In NPR the goal of the computer generated images is believability. A believable

image is one that effectively communicates the intent of the image’s creator. Believ-

ability is simpler to achieve than photorealism, because a believable model needs

only to include the details representative of the intent behind the image.

NPR is concerned with images that are abstract, guided by processes employed

by artists. In contrast to photorealism, in which the driving force is the modeling

of physical processes and behavior of light, the processes of human perception drive

NPR techniques. Following this trend, this dissertation presents two techniques

that may be applied in sequence to transform a photograph of a human face into a

caricature. First, extraneous information is removed from the photograph while

leaving intact the lines and shapes that would be drawn by cartoonists. The

output of the first step is a two-tone image called an illustration. Second, this

facial illustration may then be warped into a caricature using a practical interactive

technique developed from observations of a method used to train caricature artists.

Examples of images produced with these algorithms are shown in Figure 1.2.

Compared to previous caricature generation algorithms this method requires only

a small amount of untrained user intervention.
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Figure 1.2. Left: The source photographs. Center: Examples of illustrations
generated using the software reported in this dissertation. Right: Caricatures
created by exaggerating representative facial features. The photographs are part
of the Aleix Face Database and are included here courtesy of Aleix Martinez of
Purdue University. The entire face database is accessible online [1].

This dissertation presents four results:

1. An automated method to produce easily recognizable black-and-white illus-

trations of human faces from photographs.

2. A user-assisted method to produce caricatures from images of human faces.

3. The results of behavioral studies that show that in some tasks illustrations

yield better user performance under an objective standard.

4. The results of a functional magnetic resonance imaging (fMRI) study indi-

cating that illustrations and photographs may be processed differently when

viewed by humans.

The first two results are presented in Chapter 2, and the last two results are

presented in Chapter 3.



CHAPTER 2

COMPUTER-GENERATED FACIAL

ILLUSTRATIONS

This chapter documents a method for computing black-and-white illustrations

from source photographs and an interactive technique for creating caricatures from

facial images. The chapter details how these methods are related to previous work

on facial images in the fields of Computer Graphics, Psychology and Art.

2.1 Background

Previous research has shown that black-and-white imagery is useful for com-

municating complex information in a comprehensible and effective manner while

consuming less storage [105, 123–125, 130, 143]. This idea provides motivation for

algorithms that produce easily recognizable black-and-white illustrations of faces.

Some parts of the image may be filled in if this increases recognizability. However,

shading effects should be removed because they are not an intrinsic aspect of

the face. Ideally, such illustrations could be computed directly from photographs

without skilled user input.

Creating a black-and-white illustration from a photograph can be done in many

ways. A number of proposed methods are stroke-based. Such methods rely heavily

on user input [39, 105, 127, 144]. Stroke-based methods are mainly concerned with

determining stroke placement to maintain tonal values across the surface of an

object. For the current application the method should be automated and do away

with gray-scale information.

Another method for creating facial illustrations is to only draw pixels in the

image with a high intensity gradient [109, 110]. These pixels can be identified

using a valley filter and then thresholded by computing the average brightness
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and setting all pixels that are above average brightness to white and all other

pixels to black. However, this approach fails to preserve important high luminance

details, and thus only captures some facial features. While the resulting image

can be interpreted as a black-and-white drawing, “holes” are sometimes created in

areas that should be all dark. Filling in the dark regions seems to produce images

that are more suitable. This filling in can be accomplished by thresholding the

input luminance separately and multiplying the result of this operation with the

thresholded brightness image [110].

A third approach is to use edge detection algorithms to remove redundant data.

These algorithms are often used in machine vision applications. Most of these edge

detection algorithms produce thin lines that are connected. While connectedness is

a basic requirement in machine vision, it is specifically not needed for portraits of

faces. In fact, connectedness may reduce the recognizability of facial images [37].

To comply with the requirements that the method needs minimal trained user

input and produces easily recognizable images, the algorithm presented here is

based on a computational model of human brightness perception. Such models are

good candidates for further exploration because they flag areas of the image where

interesting transitions occur, while removing regions of constant gradient. How

this is achieved is explained next. In addition, a sense of absolute luminance levels

is preserved by thresholding the input image and adding this to the result. The

general approach of the method is outlined in Figure 2.1.

Because humans appear to employ dedicated processing for face recognition [17,

42, 53], NPR algorithms for image processing on portraits need to be designed with

care. Certain features need to remain present in the image to preserve recognizabil-

ity. The method reported in this work for producing illustrations from photographs

achieves this by applying a modified model of human brightness perception to

photographs. It should be noted that there are many reasonable brightness models

available and that this is still an active area of research [20, 54, 107, 140].
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Input luminance

Thresh. brightness

Thresh. luminance

Combined output

Figure 2.1. Brightness is computed from a photograph, then thresholded and
multiplied with thresholded luminance to create an illustration.

2.2 Contrast and Brightness Perception

While light is necessary to convey information from objects to the retina, the

human visual system attempts to discard certain properties of light [9, 19]. An

example is brightness constancy, where brightness is defined as a measure of how

humans perceive luminance [107].

Brightness perception can be modeled using operators such as differentiation,

integration and thresholding [7, 83]. These methods model lateral inhibition, which

is one of the most pervasive structures in the visual nervous system [107]. Lateral

inhibition is implemented by a cell’s receptive field having a center-surround orga-

nization. Thus, cells in the earliest stages of human vision respond most vigorously

to a pattern of light that is bright in the center of the cells receptive field and dark

in the surround, or vice-versa. Such antagonistic center-surround behavior can be

modeled using neural networks, or by computational models such as Difference
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of Gaussians [19, 33, 55, 63, 111], Gaussian smoothed Laplacians [92, 93] and Gabor

filters [74].

Difference of Gaussians is a gray-scale image enhancement algorithm that in-

volves the subtraction of one blurred version of an original gray-scale image from

another, less blurred version of the original. The blurred images are obtained

by convolving the original gray-scale image with Gaussian kernels having differing

standard deviations. Blurring an image using a Gaussian kernel suppresses only

high-frequency spatial information. Subtracting one image from the other preserves

spatial information that lies between the ranges of frequencies that are preserved

in the two blurred images. Thus, the difference of Gaussians is equivalent to

a band-pass filter that discards all but a handful of spatial frequencies that are

present in the original gray-scale image. The difference of Gaussians algorithm is

useful for enhancing edges in noisy digital images because it removes high-frequency

spatial detail including random noise. In its operation, the difference of Gaussians

algorithm is believed to mimic how neural processing in the retina of the eye extracts

details from images destined for transmission to the brain [19, 33, 55, 63, 111].

Gaussian smoothed Laplacians or a Laplacian-pyramid combine the advantages

of predictive and transform methods of image processing [2, 25]. The Laplacian-

pyramid is a versatile data structure with many attractive features for image

processing. It has many applications such as progressive image transmission. The

Gaussian smoothed Laplacian algorithm is implemented by first performing a low-

pass filter (Gaussian filter) on the original image to get a reduced version of the

image, this process is recursively repeated yielding a series of increasingly reduced

images, that together are called a Gaussian pyramid. The Laplacian pyramid is

a series of error images that are the difference between two levels of the Gaussian

pyramid. The Laplacian pyramid is like a complement of the Gaussian pyramid; it

can be decoded and recovered to the original image by expanding, then summing

all the levels of the pyramid. The proper choice of the number and distribution of

quantization levels must be carefully chosen to make the degradation imperceptible

to a viewer [34, 56].
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Gabor filters are bandpass filters that are used in image processing for feature

extraction, texture analysis, and stereo disparity estimation. Multiplying a Gaus-

sian function with a complex oscillation creates the impulse response of these filters.

Gabor showed that these elementary functions minimize the space-time uncertainty

product [51]. By extending these functions to two dimensions, it is possible to create

filters that are selective for orientation [36]. Under certain conditions, the phase of

the response of Gabor filters is approximately linear. This property is exploited by

stereo approaches that use the phase-difference of the left and right filter responses

to estimate the disparity in the stereo images. It has been shown that the profile

of simple-cell receptive fields in the mammalian cortex can be modeled by oriented

two-dimensional Gabor functions [6, 18, 80, 91, 112, 113, 122].

Closely related to brightness models are edge detection algorithms that are

based on the physiology of the mammalian visual system. An example is Marr and

Hildreths zero-crossing algorithm [93]. This algorithm computes the Laplacian of

a Gaussian blurred image (LoG) and detects zero crossings in the result. The LoG

is a two dimensional isotropic measure of the second spatial derivative of an image.

It highlights regions of rapid intensity change. Therefore, LoG can be used for edge

detection. Note that the Laplacian of Gaussian can be closely approximated by

computing the difference of two Gaussian blurred images, provided the Gaussians

are scaled by a factor of 1.6 with respect to each other [92]; a feature also employed

in the current computational model.

2.3 Computing Illustrations

To create illustrations from photographs, Blommaert and Martens [19] model

of human brightness perception is adapted to an illustration algorithm. The aim

of the Blommaert model is to understand brightness perception in terms of cell

properties and neural structures. The scale invariance property of the human

visual system can be modeled by assuming the outside world is interpreted at

different levels of resolution. Blommaert and Martens [19] demonstrate that, to a

first approximation, the receptive fields of the human visual system are isotropic
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with respect to brightness perception, and can be modeled by circularly symmetric

Gaussian profiles Ri:

Ri(x, y, s) =
1

π(αis)2
exp

(
−x2 + y2

(αis)2

)
. (2.1)

These Gaussian profiles operate at different scales s and at different image positions

(x, y). R1 is used for the center and R2 to model the surround and let α1 = 1/(2
√

2).

The latter ensures that two standard deviations of the Gaussian overlap with the

number of pixels specified by s. For the surround α2 = 1.6α1 is specified. A neural

response Vi as function of image location, scale and luminance distribution L can

be computed by convolution:

Vi(x, y, s) = L(x, y)⊗Ri(x, y, s). (2.2)

The firing frequency evoked across scales by a luminance distribution L is modeled

by a center-surround mechanism:

V (x, y, s) =
V1(x, y, s)− V2(x, y, s)

2φ/s2 + V1(x, y, s)
, (2.3)

where center V1 and surround V2 responses are derived from Equations 2.1 and 2.2.

Subtracting V1 and V2 leads to a Mexican hat shape that is normalized by V1. The

term 2φ/s2 is introduced to avoid the singularity that occurs when V1 approaches

0 and models the (scale-dependent) rest activity associated with the center of the

receptive field [19]. The value 2φ is the transition flux at which a cell starts to be

photopically adapted.

In the Blommaert model the parameter 2φ is set to 100 cd arcmin2 m−2. Because

this application deals with low dynamic range images, as well as an uncontrolled

display environment (see below), the model is heuristically adapted by setting

φ = 1. In the course of the current work it was found that this parameter could

be varied to manipulate the amount of fine detail present in the illustration. An

expression for brightness B is now derived by summing V over all scales:

B(x, y) =
smax∑
s=s0

V (x, y, s). (2.4)

The Blommaert model, in line with other models of brightness perception, specifies

these boundaries in visual angles, ranging from 2 arcmin to 50 degrees. In a practical
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application, the size of each pixel as it is displayed on a monitor, is generally

unknown. In addition, the distance of the viewer cannot be accurately controlled.

For these reasons, the angles are translated into image sizes under the reasonable

assumption that the smallest size is 1 pixel (s0 = 1). The number of discrete scales

is chosen to be 8, which provides a good trade-off between speed of computation

and accuracy of the result. These two parameters fix the upper boundary smax

to be 1.68 ≈ 43 pixels. For computational convenience, the scales s are spaced

by a factor of 1.6 with respect to each other. This allows reuse of the surround

computation at scale si for the center at scale si+1.

The result of these computations is an image that could be seen as an interpre-

tation of human brightness perception. One of the effects of this computation is

that constant regions in the input image remain constant in the brightness image.

In addition, areas with a constant gradient are removed becoming areas of constant

intensity. In practice, this has the effect of removing shading from an image.

Removing shading is an advantage for computing illustrations because shading

information is typically not shown in illustrations. Brightness images are typically

gray with lighter and darker areas near regions with non-zero second derivatives.

In illustrations, these regions are usually indicated with lines. There is therefore a

direct relation between the information present in a brightness image and the lines

drawn by illustrators.

As such, the final step is converting the brightness representation into a two-

tone image that resembles an illustration. This is accomplished by computing the

average intensity of the brightness image and setting all pixels that are above this

threshold to white and all other pixels to black. Dependent on the composition of

the photograph, this threshold may be manually increased or decreased. Average

brightness is a good initial estimate in practice. All other constants in the brightness

model are fixed as indicated above and therefore do not require further human

intervention.

Figure 2.2 shows the result of thresholding the brightness representation and

compares it to thresholding a high pass filtered image (middle) and an edge detected
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Figure 2.2. Left: Thresholded brightness. Center: High-pass filtered image
followed by thresholding. Right: The output of Canny’s edge detector [30].

image (right). Thresholding a high-pass filtered image and edge detecting are

perhaps more obvious strategies that could potentially lead to similar illustrations.

Figure 2.2 shows that this is not necessarily the case. The high-pass filtered image

was obtained by applying a 5x5 Gaussian kernel to the input image and subtracting

the result from the input image. The threshold-level was chosen to maximize detail

while at the same time minimizing salt-and-pepper noise. Note that it is difficult

to simultaneously achieve both goals within this scheme. The comparison with

Canny’s edge detector [30] is provided to illustrate the fact that connected thin

lines are less useful for this particular application.

The thresholded brightness image can be interpreted as a black-and-white illus-

tration, although filling in the dark parts produces images that seem to be easier

to recognize. Filling in is accomplished by thresholding the luminance of the input

image separately and multiplying the result of this operation with the thresholded

brightness image [110]. The threshold value is chosen manually according to taste,

often falling in the range from 3% to 5% gray. The process of computing a portrait

is summarized in Figure 2.1.

These facial illustrations are based on photographs but contain much less infor-

mation, as shown in Figure 2.3. For example, shading is removed from the image,

which is a property of Difference of Gaussians approaches. As such, the storage
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Figure 2.3. Top Row: Source images. Bottom Row: Results of the perception
based portrait algorithm.

Size (pixels) 429x619 320x240 160x160
Photograph 1.21 0.96 1.20
Illustration 0.10 0.11 0.19

Table 2.1. This table shows the required storage space, in bits per pixel, for various
sized photographs and facial illustrations.

space required for these illustrations is decreased from the space needed to store

photographs.

On a 400 MHz R12k processor, the computation time for a 10242 image is 28.5

s, while a 5122 can be computed in 6.0 s. These timings are largely due to the

FFT computation used to compute the convolution of Equation 2.2. Storage space

requirements for photographs and facial illustrations are shown in Table 2.1.
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The images could be computed faster with approximate methods, although this

could be at the cost of some quality. In particular, a multi-resolution spline method

may yield satisfactory results [26].

On the other hand, it should be pointed out that the brightness computation

involves a number of FFT computations to facilitate the convolution operations.

This makes the algorithm relatively expensive. In addition, the brightness threshold

and the threshold on luminance of the source image are currently specified by hand.

While a reasonable initial value may be specified based on the average intensity

found in the brightness images, a small deviation from this initial threshold usually

improves the result. Further research may automate this process and so make this

method better suitable for producing animated illustrations from video sequences.

Better models of brightness perception, should they become available, may improve

the results.

In particular, because human visual perception is to a lesser extent sensitive to

absolute intensity levels, a brightness model that incorporates both relative as well

as absolute light levels may further improve these results. Although Blommaert and

Martens discuss a notion of absolute light levels [19], for the current application

their model requires the additional application of thresholded absolute luminance

levels. It would be better if this could be incorporated directly into the brightness

model.

While Figure 2.3 allows the reader to subjectively assess the performance of

the algorithm, its real merit lies in the fact that specific tasks can be performed

quicker using facial illustration images than when using photographs. This finding

is presented in Chapter 3.

Finally, some of the facial features that a cartoonist would draw are absent

from the illustrations while some noise is present. Parameters in the model may

be adjusted to add more lines, but this also increases the amount of noise in the

illustrations. While the algorithm produces plausible results with the parameters

outlined above, future research into alternative algorithms may well lead to im-

proved quality.
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2.4 Superportraits and Caricatures

Two paradigms exist that explain how humans perform face recognition. In

the average-based coding theory, the brain encodes a “feature space distance” from

an average face to a given face [139]. An alternative model of face recognition

is based on exemplars [87], where face representations are stored in memory as

absolutes. Both models equally account for the effects observed in face recognition

tasks, but the average-based coding paradigm lets itself be cast more easily into a

computational model.

2.4.1 Superportraits

Superportraits of human faces are a well-studied example of the peak shift effect

in human visual perception [16, 117–119, 128]. The peak shift effect is a well-known

principle in animal learning [62, 114]. It is best explained by an example. Suppose a

laboratory rat is taught to discriminate a square from a rectangle by being rewarded

for choosing the rectangle, it will soon learn to respond more frequently to the

rectangle. Moreover, if a prototype rectangle of aspect ratio 3:2 is used to train

the rat, it will respond even more positively to a longer and thinner rectangle

with an aspect ratio of 4:1. This result implies the rat is not learning to value a

particular rectangle but a rule, in this case, that rectangles are better than squares.

So the more oblong the rectangle, the better the rectangle appears to the rat.

In the case of super portraits and caricatures, facial features that deviate from a

population average are exaggerated, making the faces more easily recognized and

learned. Figure 2.4 shows examples of superportraits.

2.4.2 Caricatures

The documented ability of caricatures to augment the communication content

of images of human faces motivated the investigation of computer-generated cari-

catures [15, 22, 117, 128]. To create a caricature the difference between an average

face and a particular face can be computed for various facial features. Traditionally

skilled artists who use lines to represent facial features created caricatures. The
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Figure 2.4. Left: Photographic examples. Right: Facial illustration examples. In
both the photographic and facial illustration examples, the first images are of 50%
anti-caricatures, the second images are the source images, and the third images are
50% superportraits.

skill of such artists lies in knowing which particular facial features are essential

and which are incidental. For facial caricatures, both artists and psychologists

agree that the feature shift for a particular face should exaggerate the differences

from an average face [22, 115, 117]. Automatically creating such drawings has been

an elusive goal, and attempts to automate this process are sparse. Methods are

described for automatically deviating from an average face, as well as techniques

that allow meaningful warping to perform extreme caricaturing.

It has been postulated that humans recognize faces based on the amount that fa-

cial features deviate from an average face [134, 139]. Thus, to produce a caricature,

features are exaggerated based on how far the face’s features deviate from an average

or norm face [22]. The most well known attempt is the “Caricature Generator”

based on the notion of an average face [22]. Examples of facial illustrations and

caricatures created using an implementation of the “Caricature Generator” software

are shown in Figure 2.5. The positions of 165 feature points are indicated by a

knowledgeable user marking points on a scanned photograph with mouse clicks.

The points for the given face are then compared with the positions of similar points

on an average face. By moving the user-defined points away from the average, an

exaggerated effect can be created. A line drawing is created by connecting the

feature points with lines. A caricature is created by translating the feature points

over some distance and then connecting them with lines. This method was later

extended to allow the feature translation to be applied to the input image in order
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Figure 2.5. Left: The source photograph. Center: An example of a line art image
created using an implementation of the “Caricature Generator” software. Right:
An example of a caricature created using an implementation of the “Caricature
Generator” software.

to produce a photographic caricature [15]. The “Caricature Generator” has become

a de facto standard for conducting research in face recognition [16, 117–119, 128].

A second semi-automated caricature generator is based on simplicial complexes [3].

The deformations applied to a photograph of a face are defined by pairs of simplices

(triangles in this case). Each pair of triangles specifies a deformation, and defor-

mations can be blended for warps that are more general. This system is capable

of interactively producing extreme exaggerations of facial features, but requires an

experienced user to meaningfully specify source and target simplices.

Both previous methods require expert knowledge or skilled user input, which

limits their applicability for every-day use. The methods in this work are semi-

automatic and produce both superportraits as well as caricatures with less user

training.

2.5 Creating a Superportrait

Superportraits are created in a semi-automatic way. A face is first framed with

four lines, which comprise a rectangle, as shown in Figure 2.6. Four vertical lines

are then introduced marking the inner and outer corners of the eyes, respectively.
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Figure 2.6. First: the face is framed by four borderlines. Second: facial features
and interior lines are matched. Third: both grid and underlying image are warped
interactively. Fourth: the resulting caricature.

Next, three additional horizontal lines mark the position of the eyes, the tip of the

nose, and the mouth. This set of horizontal and vertical lines is called a facial

feature grid (FFG).

To generate a FFG for a norm face a previously defined metric [115] is applied.

The vertical lines are set to be equidistant, while the horizontal eye, nose and mouth

lines are assigned distance values 4/9, 6/9 and 7/9 respectively, from the top of the

frame. The norm FFG is automatically computed when the face is framed by the

user. Gridding rules can also be specified for profile views [115], but for the purpose

of this work, the input is constrained to frontal views.

When a feature grid is specified for a given photograph or portrait, it is unlikely

to coincide with the norm FFG. The difference between the norm face grid and the

user-set FFG can be exaggerated by computing the vectors between corresponding

vertexes in both grids. Then, these vectors are scaled by a given percentage and the

source image is warped correspondingly. When this percentage is positive, the result

is called a superportrait, whereas negative percentages give rise to anti-caricatures,

images that are closer to the norm face than the input image (Figure 2.4).

2.6 Creating a Caricature

As a manifestation of the peak shift effect, superportraits are useful in the study

of human perception. However, more extreme distortions may be required in other

applications. Therefore, the algorithm is extended to allow more freedom. Based
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Figure 2.7. The exaggeration of facial features used by a professional caricature
artist can easily be obtained by a novice user with the algorithm. First and third
images: Examples of caricatures by noted caricature artist Ric Machin. Second
and fourth images: Examples of caricatures created using the interactive software
presented in this dissertation.

on the feature grid as described previously, vertices on both the right and left

edges of the grid may be manipulated interactively. In addition, grid lines may

be moved. These user actions are interactively visualized by warping the image

according to the position of the vertexes (Figure 2.6). This process is constrained by

disallowing the selection and manipulation of internal vertices. The resulting system

is flexible enough to create amusing caricatures, while at the same time protecting

untrained users from producing unrecognizable faces. Figure 2.7 compares examples

of caricatures drawn by noted caricature artist Ric Machin to images created using

this system.

These examples demonstrate that warping faces using a feature grid produces

exaggerated images similar to those created by a professional artist. The implemen-

tation is straightforward, in both OpenGL and Java, and interactive manipulation

was achieved on current workstations. Within two minutes, users were able to

create a caricature. Often they remarked that they were able to create several

evocative caricatures from just a single portrait. Caricatures created by users who

were given minimal verbal training are presented in Figure 2.8.
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Figure 2.8. Examples of caricatures created by novice users of the software, who
were given minimal, one to two minutes, verbal instruction in the use of the software.
They were able to produce the resulting caricature images in periods ranging from
one to four minutes. The top row shows photographs used to inspire the caricatures
in the columns below each of them.

2.7 Summary

This chapter presented a method for computing black-and-white illustrations

from source photographs and an interactive technique for creating caricatures from

facial images. While the illustrations and caricatures presented in this chapter

may be subjectively good. In the next Chapter, the illustrations and caricatures

are objectively evaluated in behavioral studies involving learning and recognition

tasks.



CHAPTER 3

EVALUATION

Many studies have shown that learning in simplified environments may proceed

faster than for similar learning tasks executed in the full environment [22, 117].

As llustrations and caricatures may be regarded as simplified with respect to

photographs, learning tasks using them may be easier than the same task using

the associated photographs. This chapter presents the results of perceptual studies

and an fMRI study carried out using illustrations and caricatures as stimulus.

3.1 Background

Measuring the ability and effectiveness of an image to communicate the intent

of its creator can only be achieved in an indirect way. In general, a behavioral

study is conducted whereby participants perform specific tasks on sets of visual

stimuli. Relative task performance is then related to the effectiveness of the image.

If participants are statistically better at performing such tasks given a certain type

of image, then these image types are said to be better at communicating for the

given task.

Three studies have documented ability of caricatures to augment the commu-

nication content of images of human faces [15, 22, 117]. In these studies Caricature

Generator software was used to produce images from source photographs. The

Caricature Generator images were then systematically warped to exaggerate the

difference of an individual face from a normalized face.

The accuracy of study participants in recognizing warped and unwarped images

was compared. One study compared the accuracy of study participants in recogniz-

ing facial images drawn by a professional artist to single line weight images traced

from the source photographs [128].
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The learning speedup and the recognition invariance demonstrated in the be-

havioral studies suggest that different brain structures may be involved in the

perception of artistic images than are involved in the perception of photographs.

Functional magnetic resonance imaging (fMRI) is a method of determining brain

activity based on a given stimulus. In this dissertation fMRI is treated as a black

box, which will create images showing statistically valid regions of brain activation.

During an (fMRI) study, the brain of the participant is scanned repeatedly,

usually using the fast imaging technique of echo planar imaging (EPI). The par-

ticipant is required to carry out some task consisting of periods of activity and

periods of rest. During the activity, the magnetic resonance (MR) signal from

the region of the brain involved in the task normally increases due to the flow of

oxygenated blood into that region. Simply put, an increase in neuronal activity is

associated with an increase in local blood flow, and this increase is measured with

fMRI. Signal processing is then used to reveal these regions. An fMRI study was

undertaken to find if the illustrations stimulated different brain activity than the

source photographs.

3.1.1 Statistical Significance

A common tool in modern research is statistical hypothesis testing. This process

involves making a hypothesis and then collecting data to test that hypothesis. The

method takes as its origin a re-formulation of the original research hypothesis, called

a null hypothesis, which is commonly written H0. In its simplest version, a null

hypothesis implies that the groups to be compared by means of the experiment are

similar. In statistical terms, this is expressed by saying that the two data sets to be

compared could very well have been drawn at random from the same set of data.

A P-value is a measure, assuming H0 is true, of how likely a given result is. A

P-value is a measure of how much evidence there is against the null hypotheses.

The smaller the P-value, the stronger the case is against H0. The general rule is

that a small P-value is evidence against the null hypothesis while a large P-value

means little or no evidence against the null hypothesis. Please note that little
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or no evidence against the null hypothesis is not the same as a lot of evidence

for the null hypothesis. Prior to conducting an experiment an α value is set for

the experiment. The α value is the value at which the researchers will reject a

hypothesis if the P-value is less than α. A typical α value is α = 0.05. Sometimes,

though, researchers will use a stricter cut-off, α = 0.01, or a more liberal cut-off,

α = 0.1. For all of the experiments in this dissertation, α is set to 0.05. If the

computed P-value is equal to or smaller than 0.05, this taken to mean that were the

null hypothesis true and an event with probability 1 in 20 or smaller has occurred.

Therefore, the two means are statistically different at the α = 0.05 level.

All statistical tests consist of the same basic steps:

1. The α value is set before the experiment is conducted.

2. From the experiment data, the value of a test variable is computed.

3. The value of the test variable is compared to a pre-arranged table to find the

significance (P-value). The P-value expresses how frequently the test variable

would reach the computed value, if the null hypothesis were true.

4. The α value is the critical P-value. If computed P is equal to or smaller than

α, the P-value is said to be significant.

It is easiest to understand the P-value in a data set that is already at an extreme.

Suppose that a drug company alleges that only 50% of all patients who take a certain

drug will have an adverse event of some kind. It is believed that the adverse event

rate is higher. In a sample of 12 patients, all 12 have an adverse event.

The data supports the belief that the adverse event rate is higher because the

data is inconsistent with the assumption of a 50% adverse event rate. Such a result

has the same likelihood as flipping a coin 12 times and getting heads each time.

The P-value, the probability of getting a sample result of 12 adverse events

in 12 patients assuming that the adverse event rate is 50%, is a measure of this

inconsistency. The P-value, 0.000244, is small enough that the hypothesis that the

adverse event rate was only 50% would be rejected.
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3.1.2 Overview of Studies

The effectiveness of the facial illustration and caricature algorithms on recog-

nition and learning tasks is evaluated in a series of behavioral studies. The hy-

pothesis is: if the facial illustration and caricature algorithms do not affect the

recognition speed and accuracy of familiar faces with respect to photographs, then

the information reduction afforded by these algorithms is relatively benign and the

resulting images can be substituted in tasks were recognition speed is paramount.

To test this hypothesis, three studies were performed that are replications of earlier

distinctiveness studies [128]. While these previous studies assessed the effect of

human drawn portraits and caricatures on recognition and learning speed, these

same studies are used here to validate the computer-generated illustrations and

caricaturing techniques. In addition, the computer generated illustrations and

caricatures are compared with the source photographs in terms of recognition and

learning speeds.

The illustrations used in these studies are computed from source photographs

by multiplying thresholded luminance and thresholded brightness images. These

illustrations are reminiscent of “line art” images. Therefore, two studies were

undertaken to compare the illustrations to images generated using the Caricature

generator software and the Canny edge detector. The Caricature generator software

is described in Chapter 2.

The Canny edge detector is used in computer vision to create single line weight

images from source photographs. The Canny operator works in a multi-stage

process. First, the image is smoothed by Gaussian convolution. Then a simple

2-D first derivative operator is applied to the smoothed image to highlight regions

of the image with high first spatial derivatives. Luminance edges in the source

image give rise to ridges in the gradient magnitude image. The algorithm then

tracks along the top of these ridges and sets to zero all pixels that are not actually

on the ridge top so as to give a thin line in the output image. This process is known

as non-maximal suppression. The tracking process exhibits hysteresis controlled by

two thresholds: T1 and T2 with T1 > T2. Tracking can only begin at a point on
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Figure 3.1. Examples of photographs and illustrations used as visual stimulus.
Left: photographs. Right: facial illustrations. The photographs are part of the
Aleix Face Database and are included here courtesy of Aleix Martinez of Purdue
University. The entire face database is accessible online [95].

a ridge higher than T1. Tracking then continues in both directions out from that

point until the height of the ridge falls below T2. This hysteresis helps to ensure

that noisy edges are not broken up into multiple edge fragments [29].

3.2 Recognition Time

This study assesses the recognition time of familiar faces presented as illustra-

tions, caricatures, and photographs. Based on the results obtained with hand drawn

images [128] and Caricature Generator images [15, 22, 117], it stands to reason that

photographs may be recognized faster than both facial illustrations and caricatures,

while caricatures would elicit a faster response time than the facial illustrations [15].

Participants were presented with sequences of images of familiar faces. Examples

of stimulus images are shown in Figure 3.1. Each participant was asked to say the

name of the person pictured as soon as that persons face is recognized. Reaction

times as well as accuracy of the answers were recorded. Images were presented to

the participants in three separate conditions: photographs and facial illustrations,

photographs and caricatures, or facial illustrations and caricatures. The experiment

conducted in this study is the same as the one conducted by Stevenage [128]. The

details of this study are presented in Appendix A.1.

The difference between the mean recognition time for photographs and illustra-

tions of familiar faces is not statistically different, hovering around 1.89 seconds.
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The caricatures were recognized on average 0.09 seconds slower than photographs.

There is no statistical difference, at the α = 0.05 level, in the reaction time between

caricatures and facial illustrations. In each condition, the accuracy of recognition is

higher than 98%, indicating that there is no significant speed for accuracy trade-off

in this study.

From this study, it can be concluded that substituting illustrations for fully

detailed photographs has no significant recognition speed cost and can therefore

be used for tasks in which speed of recognition is central. Caricatures cause a

slight degradation in reaction time. However, half of the participants laughed

aloud during this study when shown caricatures of familiar faces. Laughter toward

the stimulus may mean that caricatures can be used for entertainment value in

situations where recognition speed is not of the utmost importance.

3.3 Learning Speed

At least one study indicates that caricatures do not improve the ability to

learn [58], while others have shown that caricatures of unfamiliar faces are learned

more quickly than the same faces shown as fully detailed drawings or as pho-

tographs [97, 128]. The hypothesis is that the outcome of these studies is strongly

dependent on the particular techniques used to create the stimuli. Because the

current approach for creating illustrations and caricatures is very different from

those used in previous studies, participants were subjected to a learning task to

assess how illustrations and caricatures influence the ability to learn human faces.

In this study, each participant was presented with images of 12 unfamiliar faces

in sequence. Each face is verbally assigned a name. Each participant is shown

exclusively photographs, facial illustrations, or caricatures. Next, the images were

randomly reordered and presented again. The participant is asked to recall the

name corresponding to each image. Throughout this process, the study coordinator

corrected mistakes and repeated the names that the participant could not remem-

ber. The images were shuffled, and the process is repeated until the participant
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Condition Trials Std. Error
Min Max Mean

Photographs 1 8 5.4 0.79
Illustrations 1 4 2.3 0.26
Caricatures 1 7 3.5 0.58

Table 3.1. Learning speed studies, showing the minimum, maximum, and mean
number of trial iterations for the study presented in Study 2.

Condition 5 sec. 15 sec. 60 sec.
Train Illustration, Test Illustration 69.32 90.63 98.96
Train Illustration, Test Photograph 57.58 63.10 76.34
Train Photograph, Test Illustration 65.58 73.07 90.63
Train Photograph, Test Photograph 88.64 97.92 98.96

Table 3.2. This table shows the mean accuracy results for the four training and
testing methods across three different training times.

could correctly name all 12 faces once without error. The details of this study are

presented in Appendix A.2.

Participants learned to recognize 12 unfamiliar faces more than twice as fast

in trials with illustrations compared to trials with photographs. On average 2.3

passes were required for illustrations while photographs required an average of 5.4

passes. Participants learned to recognize caricatures of unfamiliar faces 1.5 times

faster than with photographs. On average 3.4 passes were required for illustrations

while photographs required an average of 5.4 passes. The statistics for the rate of

learning (number of trials) for each representation of the faces is shown in Table 3.1.

Three additional studies investigated whether the amount of training time af-

fected recognition accuracy. Participants were presented with photographs and

illustrations with different training times, (5, 15, and 60 seconds), before the testing

phase of the study. The data collected in these studies suggests that as the amount

of training time decreases, photographs may become better than illustrations in

face learning tasks. The mean accuracy for the four training conditions and the

three training lengths are shown in Table 3.2. From this data, one can conclude



30

User study Accuracy
Portraits Caricatures Photographs

Rhodes et al. [117] 38% 33% -
Stevenage [128] 96% 100% -
Current study 99% 98% 98%

Table 3.3. This table shows the recognition accuracy results for facial illustrations,
caricatures, and photographs across studies. These results show that illustrations
perform better than previous computer drawing methods and may be as accurate
as artist drawn images.

that performance in recognition tasks may degrade more rapidly when illustrations

are used as stimulus than when photographs are used. Additional studies would

need to be made to make a strong statistical argument for this point. The details

of these studies are presented in Appendices A.3, A.4 and A.5.

3.4 Learning Accuracy

Participants who were trained using the portrait or caricature images partic-

ipated in a follow-up study using the original photographs, each shown once. In

this study, the number of incorrectly named faces was recorded. The training using

either caricatures or facial illustrations both resulted in a 98% naming accuracy

for photographs. Details are given in Appendix A.6. The accuracy witnessed with

the algorithms is markedly better than the results obtained with the Caricature

Generator, while at the same time leading to shorter response times (compare with

Rhodes et al. [117]). The recognition accuracy measured in this study is compared

with studies using hand-drawn images, Stevenage [128], and images created using

the Caricature Generator [22] in Table 3.3.

The results of this study show that the illustrations produced using the methods

reported in this dissertation may be as accurate as artist drawn images. In addition,

the results suggest that the illustrations perform far better than images produced

using the Caricature generator software. This study also demonstrates that the

participants were very accurate when photographs were used as stimulus images.
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Figure 3.2. Examples of photographs and Canny edge images used as visual
stimulus. Left: facial photographs. Right: Canny edge images. The photographs
are part of the Aleix Face Database and are included here courtesy of Aleix Martinez
of Purdue University. The entire face database is accessible online [95].

3.5 Photographs versus Canny Edge Detected Images

Another study was conducted to investigate the ability of participants to learn

and recognize sets of faces presented as photographs or Canny edge detected images.

The Canny operator was designed to be an optimal edge detector [29]. It takes as

input a gray scale image, and produces as output an image showing the positions

of tracked intensity discontinuities. Examples of stimulus images are shown in

Figure 3.2.

The purpose of this study is to enable a comparison between the facial illus-

tration methods presented in this dissertation and the current “state of the art”

automatic edge line algorithm. The results of this study show that participants

trained with Canny edge images and tested on photographs were accurate 38%

of the time. In comparison, participants trained with illustrations and tested on

photographs were accurate 63% of the time. Participants trained on photographs

and tested on Canny edge images were accurate 59% of the time while Participants

trained on photographs and tested on illustrations were accurate 73% of the time.

The details of this study are presented in Appendix A.7.

The output of the Canny operator is determined by three parameters: the

width of the Gaussian smoothing operator used in the smoothing phase, and the

upper and lower thresholds used by the tracker. The Gaussian smoothing operator
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Figure 3.3. Examples of photographs and Caricature Generator software images
used as visual stimulus. Left: Photographs. Right: Caricature Generator images.
The photographs are part of the Aleix Face Database and are included here courtesy
of Aleix Martinez of Purdue University. The entire face database is accessible
online [95].

is a 2-D convolution operator that is used to blur images and remove detail and

noise. Increasing the width of the Gaussian mask reduces the Canny edge detector’s

sensitivity to noise, at the expense of some fine detail in the image. The localization

error in the detected edges also increases slightly as the width of the Gaussian

smoothing operator is increased. Usually, the upper tracking threshold can be set

quite high and the lower threshold quite low for good results [29]. Setting the lower

threshold too high will cause noisy edges to break up. Setting the upper threshold

too low increases the number of spurious and undesirable edge fragments appearing

in the output. In all of the Canny edge images the width of the Gaussian smoothing

operator was set to 0.60, the lower threshold was set to 0.50, and the upper tracking

threshold was set to 0.90.

3.6 Photographs versus Caricature Generator Images

This study investigates the ability of participants to learn and recognize sets of

faces presented as photographs or Caricature Generator software images. The mo-

tivation for this study is the fact that “Caricature Generator” images have become

the de facto standard for conducting research in face recognition [16, 117–119, 128].

Examples of stimulus images are shown in Figure 3.3.
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The results of this study show that the participants were far less accurate

when trained to recognize facial images using “Caricature Generator” images and

that this result is statistically significant. Participants trained with “Caricature

Generator” images and tested on photographs were accurate 30% of the time. In

comparison, participants trained with illustrations and tested on photographs were

accurate 63% of the time. Participants trained on photographs and tested on

“Caricature Generator” images were accurate 39% of the time while Participants

trained on photographs and tested on illustrations were accurate 73% of the time.

The details of this study are presented in Appendix A.8.

3.7 Functional Magnetic Resonance Imaging

fMRI can be used to identify regions of the brain that are associated with a

given stimulus [81, 82, 99, 103, 121, 133]. The most commonly used technique for

the localization and measurement of brain activity is based on blood oxygenation

level dependent (BOLD) imaging. BOLD fMRI techniques measure changes in

the magnetic field within a small volume of tissue resulting from changes in blood

oxygenation within the tissue. The MRI signal intensity reflects the concentration of

water within the sample and is dependent on the chemical and physical environment

in which the water molecules reside [52]. The MRI scanner measures the emission of

radio frequency energy by hydrogen atoms in the water molecules of the brain [131].

In the presence of a magnetic field, hydrogen atoms absorb energy applied at

a characteristic radio frequency. The hydrogen atoms will then emit energy at

the same radio frequency until they gradually return to their original equilibrium

state [102]. The MRI scanner measures the sum total of the emitted radio-frequency

energy.

BOLD imaging takes advantage of the magnetic properties of the two different

types of hemoglobin in the blood: deoxyhemoglobin which is paramagnetic, and

oxyhemoglobin which is weakly diamagnetic [108]. Paramagnetic atoms have net

orbital or spin magnetic moments that are capable of being aligned in the direction

of the applied field. Diamagnetism is the magnetization in the opposite direction
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to that of the applied magnetic field. All substances are diamagnetic, but it is a

weak form of magnetism and may be masked by other, stronger forces, for instance

a magnetic field. Therefore, changes in oxygenation of the blood can be observed

as the fMRI signal changes [75, 102, 132]. The signal measured with BOLD fMRI is

the ratio of oxyhemoglobin to deoxyhemoglobin in the blood in an area of the brain.

Increased blood flow to an area changes the concentration of deoxyhemoglobin in

the nearby tissue. The presence of deoxyhemoglobin in the blood vessels causes

a darkening of the image in those voxels containing vessels [100, 101] due to a

susceptibility difference between the vessel and its surrounding tissue [131].

The emerging model of increased blood flow, called the hemodynamic response,

results from an increase in oxygen consumption due to an increase in neuronal

activity [28, 65, 88, 99, 102]. fMRI BOLD therefore measures neuronal activity indi-

rectly via an assumed correlation with local blood flow [8]. This assumption, that

the fMRI signal is approximately proportional to a measure of local neural activity,

is referred to as the linear transform model of the fMRI signal [21]. fMRI BOLD

measurements are averaged over several cubic millimeters of tissue and a time period

of several seconds allowing for the possibility of a complex nonlinear relationship

between a given stimulus and the resulting neuronal activity [70]. While fMRI

BOLD imaging via the linear transform model is not a directly quantifiable measure

of neuronal activity, it is a useful approximation of the complex interactions between

blood flow and neuronal activity [8, 32, 94, 146]. The precise correlation between

neuronal activity, metabolic demand, and the hemodynamic response is still not

fully defined. However, it has been shown that the fMRI BOLD signal correlates

well with visual perception [10].

3.8 Designing the fMRI Study

The design of fMRI studies relies on the ability to detect stimulus evoked signal

changes in a series of MRI signals and to extract regions of activation from these

signals using statistical techniques [35]. The most common stimulus presentation

pattern in fMRI studies is to alternate periods of stimulus and rest. Using this
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design, robust activation can be detected in the primary motor, sensory, and visual

cortex [90]. These periods are labeled on and off. This type of experiment is called

a boxcar design. The duration of the stimulus and rest periods needs to be long

enough to accommodate the hemodynamic response. Therefore, a time period of

between eight and sixteen seconds is chosen. The rest and stimulus periods are

repeated for as long as necessary to gain enough contrast, compared to noise, to

detect the activation. However, the duration of the study is a careful balance

between how long the participants can comfortably lay still, the amount of data

required to obtain sufficient contrast to noise, and the amount of drift inherent in

the scanner. In addition, there is the possibility of the participant habituating to

the stimulus causing the BOLD contrast to reduce with time.

The choice of stimulus is critical in the design of fMRI studies. For example,

activating the primary visual cortex is straightforward, nearly any visual stimulus

will do. However, to determine the regions of the brain responsible for color

discrimination is more difficult [141]. It is necessary to design the on and off periods

such that there is only one well defined signal difference between them, which only

activates the brain regions responsible for the task. Single region activation is not

always possible and so a hierarchy of studies often performed. For example, to

identify the brain regions responsible for Task A, a study can be performed that

involves Task A and Task B, and then one that only involves Task B. The regions

responsible for Task A would presumably be those activated in the first study but

not the second. This experimental method assumes that the BOLD signal is a

linear system, which may not be the case [99, 133]. In addition, there may be some

unaccounted for differences in the on and off periods that may affect the BOLD

signal.

Another problem when dealing with cognitive events such as memory is that

a stimulus must be presented and a response given. Many stimuli give better

activation if a response is required to be made [60, 126, 142]. Both the stimulus

and the response must be compensated for by being included in the off period

or an additional study must be performed later that involves similar stimulus and
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response, but not the cognitive task performed in the original study. Alternatively,

the stimulus may be presented in a different modality and the regions common to

both stimulus presentation types can be assumed responsible for the cognitive task

of interest.

In the case of using illustrations and photographs, the fMRI study needed to

be different from the psychophysical studies carried out in the first part of this

dissertation because fMRI constrains the experimental methods that can be used.

The choice of the optimum parameters for fMRI is always a compromise, and more

often depends on what is available than on what is desirable. The following list

delineates the changes that had to be made.

1. Boxcar Design of fMRI Studies – fMRI Studies are typically conducted using

8 to 16 second stimulus blocks to contrast blood flow in affected regions of

the participants brain [13, 82, 103].

2. Large Number of Stimulation Images – The task that was developed required

pilot studies that evaluated photographs, illustrations, and caricatures as

stimulus. To avoid repetition a large number of stimulus images were needed.

3. Contrast Image – The block design of the fMRI BOLD studies requires a

resting condition to contrast with the active condition.

4. No Verbal Response – In the previous psychophysical studies verbal responses

were given by the participants in reaction to the visual stimulus.

5. Active Task – Numerous studies have shown that measurable BOLD response

is higher in studies with an active task design than in studies with a passive

task [60, 126, 142].

6. No Auditory Stimulus – In the previous psychophysical studies auditory

stimulus were given to the participants in at the same time as the visual

stimulus.
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Figure 3.4. These images with differing facial expressions are part of the Aleix Face
Database and are included here courtesy of Aleix Martinez of Purdue University.
The entire face database is accessible online [95].

7. Incorporate Behavioral Studies – A perception study was incorporated into

the fMRI study to be certain that the state of being inside of the fMRI

apparatus did not affect the perceptual phenomena being observed.

3.8.1 Large Number of Stimulation Images

To avoid repetition in the faces viewed by the participants in the fMRI studies

a large number of stimulus images were needed. The Aleix Face Database [96] was

used as a source of facial images. Examples of Aleix Face Database images are

shown in Figure 3.4. This face database was created by Aleix Martinez and Robert

Benavente in the Computer Vision Center (CVC) at the Universitat Autonoma de

Barcelona. It contains over 4,000 color images corresponding to 126 faces (70 men

and 56 women). Images feature frontal view faces with different facial expressions,

illumination conditions, and occlusions (sun glasses and scarf). The pictures were
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Figure 3.5. Examples of contrast images used in the behavioral studies and in the
fMRI study. Row 1: photograph, illustration, caricature, superportrait illustration.
Row 2: Canny edge detected, Caricature Generator software, phase-scrambled
illustration, phase-scrambled photograph. The phase-scrambled images were used
to create baseline-viewing conditions in pilot versions of the fMRI study. The
photograph is part of the Aleix Face Database and is included here courtesy of Aleix
Martinez of Purdue University. The entire face database is accessible online [95].

taken at the CVC under strictly controlled conditions. No restrictions on wear

(clothes, glasses, make-up, hair style, etc.) were imposed on the participants. Each

person participated in two sessions, separated by two weeks (14 days) time. The

same poses and conditions were photographed in both sessions. After culling images

of individuals with glasses and facial hair from the database, 78 usable images

remained.

3.8.2 Contrast Image

Examples of contrast images used in the behavioral studies and in the fMRI

study are shown in Figure 3.5. A robust method for generating BOLD contrast is to

continually acquire magnetic resonance images while the participants are presented
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Figure 3.6. Left: The Lumina LP-400 controller. Right: The Lumina LP-400
response pads. This image is included here courtesy of Hisham Abboud and the
Cedrus Corporation [1].

with of sensory stimulation [13, 82, 103]. These blocks of sensory information are

inter-spaced with blocks of a resting condition to establish a baseline. The fMRI

images acquired during the resting condition are subtracted from the corresponding

fMRI images acquired during the stimulation condition to form a difference image.

These difference images show BOLD contrast in brain regions where the stimulated

neuronal activity leads to a reduction in the concentration of deoxyhemoglobin [100,

103].

3.8.3 Active Task and No Verbal Response

In fMRI verbal response is not viable due to the fact that any head or neck

movement on the part of the participants can negatively effect the resulting fMRI

scan [14]. Requiring the participant to respond orally almost always results in head

movement concurrent with the stimulus. All response movements need to be small

to reduce head motion during the scanning.

To conduct a study with an active task but no verbal response the Lumina

LP-400 response system was used. The controller and pads are shown in Figure 3.6.

The Lumina LP-400 was designed specifically for use in an fMRI environment. The
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Figure 3.7. A) Response Pads: These are built of 100% plastic and fiber optics.
B) OTEC Unit: Converts electricity to light and is connected to the pads via
protected fiber optic cables. C) Shielded Cable: Connects the OTEC unit to the
penetration panel. Uses wires and connectors of the highest quality. D) RF Filter:
Optionally installed if the penetration panel does not have a built-in filter. E)
Shielded Cable: Connects the penetration panel to the controller. F) Controller:
Detects key presses, times them, performs TTL I/O, and connects to the host
computer. G) Serial Cable: Connects the controller to the host computer. This
image is included here courtesy of Hisham Abboud and the Cedrus Corporation [1].

system consists of several components including the pads, controller, and over 40

meters of shielded cables. An overview of the entire Lumina LP-400 response system

is shown in Figure 3.7.

3.8.4 No Auditory Stimulus

Auditory stimulus is difficult to present in an fMRI study [61]. Rapid imaging

scanners are very noisy during operation. Although aural cues can be heard,

these cues are not as easily detected by participants as visually presented cues.

In addition, detecting activation in the primary auditory cortex is difficult since

there is always a large amount of ambient sound during both the on and off

periods. To build an fMRI study with an associated behavioral study that avoids
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Figure 3.8. Examples of images augmented with name text. These augmented
images were used in the fMRI study instead of using an auditory stimulus to identify
the faces. Rows 1 and 2: training photographs, testing photographs, training
illustrations and testing illustrations. The photographs are part of the Aleix Face
Database and are included here courtesy of Aleix Martinez of Purdue University.
The entire face database is accessible online [95].

auditory stimulus, the face images were augmented with either one or two first

names, depending on whether the images was used for training or testing, printed

in Helvetica font. Examples of such augmented images are shown in Figure 3.8.

Two behavioral studies were conducted in which participants were presented

with illustrations or photographs augmented with names. The results of these

studies show that photographs and illustrations augmented with names are not

significantly different as stimulus images in this type of task. In addition, these

studies demonstrate that response accuracy is not different from the studies in

which an auditory stimulus was given. The full details of these studies are presented

in Appendices A.9 and A.10.
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Condition Outside fMRI mean In fMRI mean P-value
Train Illustration, Test Illustration 82.51 81.82 0.179
Train Illustration, Test Photograph 72.78 79.80 0.917
Train Photograph, Test Illustration 81.04 81.82 0.336
Train Photograph, Test Photograph 79.55 87.88 0.958

Table 3.4. Recognition study, showing the mean value of correctly identified faces
for four methods of training and testing. The first column is in a study outside of
the fMRI machine. The second column shows a study using the same stimulus in
the same order but was conducted during an fMRI scan.

3.8.5 Incorporate Behavioral Studies

In the fMRI pilot study and the fMRI behavioral study participants were pre-

sented with illustrations or photographs augmented with names. The fMRI pilot

study was conducted outside of the fMRI scanner under lab conditions. The fMRI

study used the same stimulus in the same order as the fMRI pilot. However, the

fMRI study took place during an fMRI scan. In the fMRI pilot study participants

choose the name that they thought was correct by pressing a designated key on

the laptop computer keyboard. In the fMRI behavioral study participants choose

the name that they thought was correct by pressing a key on the Lumina response

pad while inside the fMRI machine. These two studies show that the results of

the fMRI pilot study and the fMRI behavioral study are very similar. None of the

means were found to be significantly different. The full details of these studies are

presented in Appendices A.11 and A.12. The results of the study showing the mean

accuracy of correctly identified faces outside of the fMRI machine and inside the

fMRI are shown in Table 3.4.

3.8.6 Illustrations versus Superportraits and Caricatures

Two separate studies were undertaken to investigate the ability of participants to

learn and recognize sets of faces presented as illustrations and either superportraits

or caricatures. An earlier study, reported in Section 3.2, pointed to the fact

that recognition time and accuracy are very similar when using photographs or
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Figure 3.9. Examples of illustrations and superportraits used as visual stimulus.
Left: facial illustrations. Right: superportraits.

illustrations as stimulus. In addition, the same study showed that illustrations and

caricatures elicit similar responses in behavioral tasks.

The results of these studies show that superportraits and caricatures elicit the

same response as illustrations in behavioral tasks when using the current stimulus

images and experimental procedures. Therefore, caricatures and superportraits

would not need to be included in the fMRI behavioral experiment. It was desirable

to drop the caricatures and superportraits for two reasons: to simplify the exper-

iment and allow for a greater number of contrasts between the on and off states

of the experiment and to cut the time duration of the fMRI experiment down to

9 minutes to avoid drift in the fMRI machine. Examples of stimulus images are

shown in Figures 3.9 and 3.10.

The results of these studies show that the participants were more accurate at

recognizing facial images when trained on illustrations than when trained with

either superportraits or caricatures. However, the mean accuracy was not signif-

icantly different between illustrations and superportraits or between illustrations

and caricatures. Therefore, caricature and superportrait images were not used

as stimulus in the fMRI study. The details of these studies are presented in

Appendices A.13 and A.14.



44

Figure 3.10. Examples of illustration and caricature images used as visual
stimulus. Left: facial illustrations. Right: caricatures.

3.9 fMRI Study Results

The recognition invariance demonstrated in the user studies suggests that dif-

ferent brain structures may be involved in the perception of the illustrations than

in the perception of photographs. Statistical parametric maps computed from the

fMRI data confirm this hypothesis. Statistical parametric mapping (SPM) is used

to identify functionally specialized brain regions and is the most prevalent approach

in characterizing functional brain anatomy. SPM is a voxel-based approach that

allows the creation of images that show statically significant response to a given

stimulus. The details of fMRI data analysis are presented in Appendix B.

Figure 3.11 shows examples of multiple statistical parametric maps computed

from the fMRI dataset. The fact that differences occur in the area and level of

activation in the decoding images is a new and exciting finding.

The fMRI images at the top of Figure 3.11 were acquired while participants

viewed illustrations as stimulus, and show bilateral activation in the frontal lobes

of the brain. The fMRI images at the bottom of Figure 3.11, which show activation

on only one frontal lobe, were acquired while participants viewed photographs as

stimulus. Subjectively it can be observed that the brain images in the lower right

corner of Figure 3.11 show a higher overall level of activation as well as activation

in different areas that in the other images.
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Figure 3.11. These images show a statistical parametric map (SPM) of brain
activation during the fMRI experiment. These images are of normalized data over
all the participants. Top Row: The SPM on the left shows thresholded activation
during the training phase of the fMRI study with photographs as the stimulus
(encoding photographs). The SPM on the right shows thresholded activation
during the testing phase of the fMRI study with photographs as the stimulus
(decoding photographs). Bottom Row: The SPM on the left shows thresholded
activation during the training phase of the fMRI study (encoding illustrations) with
illustrations as the stimulus. The SPM on the right shows thresholded activation
during the testing phase of the fMRI study with illustrations as the stimulus
(decoding illustrations).

3.10 Summary

This chapter presented the results of 14 perceptual studies and an fMRI study

carried out using illustrations and caricatures,which were created using the methods



46

of Chapter 2, as stimulus. These studies show that in tasks involving recognition

speed the illustrations are not significantly different from photographs as stimulus.

In addition, in learning tasks participants presented with illustrations as stimulus

performed better than participants presented with photographs. These results are

consistent with the results of previous studies were the stimulus images were drawn

by professional artists [128]. While these results are interesting, the major impact

of these studies is stating to the NPR community that studies in human perception

are a viable method of measuring the effectiveness of NPR images. The results

of the fMRI study show that the illustrations, which produce the same behavioral

results as photographs, produce higher overall activation as well as activation in

different areas of the brain.



CHAPTER 4

CONCLUSION

To restate the findings, this dissertation presents four main results:

1. An automated method to produce easily recognizable black-and-white illus-

trations of human faces from photographs.

2. A user-assisted method to produce caricatures from images of human faces.

3. The results of behavioral studies that show that in some tasks using illustra-

tions yield better user performance than the same tasks using photographs

under an objective standard.

4. The results of a functional magnetic resonance imaging (fMRI) study indi-

cating that illustrations and photographs may be processed differently when

viewed by humans.

The algorithms presented in Chapter 2 produce easily recognizable illustra-

tions of human faces from photographs while minimizing the amount of computer

memory required to encode these images. In addition, Chapter 2 reported on an

interactive technique for creating caricatures from facial images. This technique

allows non-skilled users to quickly and easily create caricatures.

The behavioral studies documented in Chapter 3 demonstrate that substituting

illustrations for fully detailed photographs has no significant impact on recognition

speed. In addition, learning tasks can be accomplished faster when illustrations

or caricatures are used as stimulus instead of photographs. The results shown in

Chapter 3 are consistent with the results of previous studies were the stimulus

images were drawn by professional artists [128]. In addition, the illustrations
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performed better in accuracy studies than previous computer generated line art

methods [15, 22, 117] and Canny edge detected images [29]. While these results are

interesting, the major impact of these studies is stating to the NPR community that

studies in human perception are a viable method of measuring the effectiveness of

NPR images.

The learning speedup and the recognition invariance demonstrated in the behav-

ioral studies Chapter 3 suggest that different brain structures may be involved in the

perception of artistic images than are involved in the perception of photographs. In

the case of the facial illustrations generated using the methods of this dissertation

this seems to be true. The results of the fMRI study show that the illustrations,

which produce the same behavioral results as photographs, produce higher overall

activation as well as activation in different areas of the brain.

4.1 Future Work

There are many possible future directions for the facial illustration work. Ani-

mating human facial illustrations is a natural extension of this work. Processing a

series of images using the techniques would lead to an animated portrait. Currently

only an image filtering technique is used to produce facial illustrations. Another

possibility is to incorporate stroke based techniques to produce images more remi-

niscent of drawings. In addition, the conditions under which photographs are taken

may influence the output of the illustration algorithm. For example skin blemishes;

freckles, or even a slight beard may sometimes lead to artifacts in the illustrations.

Although this issue can be circumvented by making the participants wear makeup,

or even by touching up the photographs in a drawing program, a more principled

approach would be to further increase the robustness of the algorithm against these

factors.

The illustrations presented in this work open the door for a number of potential

applications. First, the resulting illustrations are suitable for rapid transmission

over low bandwidth networks. The illustrations may be stored with only one bit

per pixel and image compression may further reduce memory requirements. As
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such, one can foresee applications in telecommunications where users may transmit

illustrated signature images of themselves in lieu of a caller identification number

when making phone calls. While wireless hand-held digital devices are already quite

advanced, bandwidth for rapidly transmitting images is still a bottleneck. The

caricatures produced using the methods of this dissertation have largely similar

characteristics in terms of recognition and learning tasks and can therefore be

applied in entertainment oriented applications without significantly impeding task

performance. Behavioral studies involving other types of NPR image types seems

certain to uncover additional tasks that can be performed better using NPR images

as stimulus instead of photographs.

Research in face recognition may also benefit from using the techniques reported

in this work. The method for producing superportraits described in Chapter 2

constitutes a viable alternative for further research into this phenomenon, and may

prove to be a good replacement for the “Caricature Generator” algorithm that is

regarded as the de facto standard.

The transfer of information in learning tasks is another area for future investi-

gation. For example, once the front view of a face is learned, how well can a profile

be recognized? Could a facial representation learned in a line or caricature format

be recognized in a photo of a crowded room or in person? These are intriguing

questions that further work in this area might pursue.

Currently a renaissance is occurring in the area of brain function mapping using

fMRI. NPR images may have a larger roll to play in the unfolding process of

human understanding of the inner workings of the brain. NPR images are simplified

versions of reality. By comparing how the brain reacts to NPR images compared to

how the brain reacts to photographs scientists may be able gain insight into human

visual perception.



APPENDIX

PERCEPTION STUDIES

As stated in Chapter 3, for all of the studies in this dissertation, α is set to 0.05.

P-values are computed using two-way analysis of variance (ANOVA). Therefore,

if the computed P-value is equal to or smaller than 0.05, this taken to mean that

were the null hypothesis true and an event with probability 1 in 20 or smaller has

occurred. Therefore, the two means are taken to be statistically different at the

α = 0.05 level.

A.1 Study 1: Recognition Speed

A.1.1 Participants

In this study, 42 graduate students, postgraduates and research staff acted as

volunteers.

A.1.2 Materials

In this study, 60 images depicting the faces of 20 colleagues of the volunteers

were used as visual stimuli. Each face was depicted as a gray-scale photograph,

an illustration, and a caricature. The photographs were taken using a Kodak 330

digital camera with the flash on. In a pilot study five independent judges rated

each illustration and caricature as a good likeness of the face it portrayed. The

images were displayed on a Dell Trinitron monitor at a distance of 24 inches. The

background of the monitor was set to black and displayed images subtended a visual

angle of 12.9 degrees. Images were shown for five seconds at five-second intervals.
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A.1.3 Procedure

Three two-part studies were conducted, each with 14 Participants. The first part

of the study allowed participants to rate their familiarity with a list of 20 names on

a seven-point scale with a purpose designed user interface. Participants were given

the following written instructions: “Please read each name and form a mental image

of that persons face. Then say the name aloud. Finally, rate the accuracy of your

mental image of that person and position the slider accordingly. Please repeat this

for each person on the list.” By pronouncing the names of the people that were

rated, participants tend to reduce the “tip-of-the-tongue” effect where a face is

recognized without being able to quickly recall the associated name [128, 147, 148].

In the second part of this study, the 12 highest rated faces are selected for each

participant and were shown in two of three possible conditions. Participants in

Study 1.a saw photographs and illustrations. Study 1.b consisted of photographs

and caricatures, and Study 1.c consisted of illustrations and caricatures. The

written instructions for this part were: “In this study you will be shown pictures of

peoples faces you may know. Each picture will be shown for five seconds followed by

a five second interval. Please say the name of each person as soon as you recognize

this person.” The study coordinator provided additional verbal instructions to

reduce the surprise associated with showing the first image (a practice trial), and to

further reduce the tip-of-the-tongue effect, participants were told that first, last or

both names could be given, whichever was easiest. One study coordinator recorded

the accuracy of the answers and a second study coordinator, who pressed a key at

the end of the response, recorded the response time for each image. This stopped

the timer that was started automatically upon display of the image.

A.1.4 Results

Participants were faster at naming photographs (M = 1.89s) compared to cari-

catures (M = 2.01s, p < 0.01). There was no difference between the time to name

photos compared with illustrations (p = 0.55) and a marginal advantage for naming
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Condition Min Max Mean Std. Error
Study 1.a (p = 0.011)

Photograph 1.53s 2.34s 1.89s 0.080
Caricature 1.57s 2.57s 2.01s 0.094

Study 1.b (p = 0.072)
Portrait 1.47s 2.62s 1.20s 0.089
Caricature 1.47s 2.83s 2.11s 0.120

Study 1.c (p = 0.555)
Photograph 1.38s 2.30s 1.85s 0.069
Portrait 1.51s 2.32s 1.85s 0.096

Table A.1. Recognition speed results, showing the minimum, maximum, and mean
time for each condition in each study.

illustrations compared to caricatures (p = 0.07). The accuracy for recognizing

photos, illustrations and caricatures are 98%, 99% and 98% respectively. Table A.1

provides minimum, maximum, and mean times recorded for each condition on each

study.

A.2 Study 2: Learning Speed

A.2.1 Participants

In this study, 30 University of Utah graduate students, postgraduates and

research staff acted as volunteers. They were selected for unfamiliarity with the

faces presented in this study.

A.2.2 Materials

Gray-scale photographs of the faces of six males and six females were used as

stimulus in this study. An identical pilot study as in Study 1 was carried out

and the 12 facial illustrations and 12 caricatures derived from these photos were

all rated as good likenesses. All photos, facial illustrations and caricatures were

printed on a laser printer at a size of 6”x8” at 80 dpi and mounted on matting

board. Each face was randomly assigned a two-syllable first name from a list of the
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most popular names of the 1970s (taken from www.cherishedmoments.com/most-

popular-baby-names.htm). In a separate pilot study this set of names was rated

for distinctiveness and names causing confusion were replaced.

A.2.3 Procedure

Each participant was given a list with 12 names and then asked to learn to match

these names with the 12 faces. The participants were divided into three groups of

10 and each participant was individually presented exclusively with photographs,

illustrations or caricatures. Each participant was first shown all 12 faces, one image

at a time, for about three seconds and was told the name assigned to that face. The

faces were then shuffled and individually presented to the participant who was now

asked to recall each name. The number of incorrect responses was recorded and

the participant was corrected if mistakes were made. This procedure was repeated,

shuffling the faces between each trial, until all twelve faces were correctly named

in two successive sequences. The number of trials taken to reach this criterion

represents the dependent variable in this learning study.

A.2.4 Results

Illustrations were learned substantially more quickly than photos (p < 0.001).

In this trial, neither caricatures versus photos nor illustrations versus caricatures

could not be distinguished statistically (p = 0.093, p = 0.081). Learning appears to

be quickest when the faces were presented as illustrations, followed by caricatures

and then photographs.

A.3 Study 3: Illustrations versus Photographs with a

Sixty Second Learning Time

This study investigates the ability of participants to learn and recognize sets of

faces presented as illustrations or photographs.



54

A.3.1 Participants

In this study, 12 University of Utah undergraduates participated as part of a

research extra credit opportunity for their psychology class. All participants were

tested individually, none knew of the hypothesis being tested.

A.3.2 Materials

In this study, 64 face images from the AR Face Database [96], 32 males and 32

females, were used as stimulus. The images were presented to the participants as

gray-scale photographs or as illustrations. An identical pilot study as in Study 1 was

carried out and the 32 facial illustrations, 16 males and 16 females, were all rated

as being a good likeness. Facial images were presented to the participants using a

Macintosh Ibook laptop computer at a distance of 24 inches. The background of

the laptop monitor was set to black and displayed images that subtended a visual

angle of 12.9 degrees. The participants rated each face using a 5-point Likert-type

scale on paper. Likert scales are commonly used in attitudinal measurements. This

type of scale uses a five-point scale ranging from strongly agree, agree, neither

agree nor disagree, disagree, strongly disagree to rate people’s attitudes. Variants

of the Likert-scale exist that use any number of points between three and ten. Four

different rating scales were used by the participants to rate the face based on the

faces: attractiveness, distinctiveness, honesty and likability.

A.3.3 Procedure

This study was broken into two phases, a learning phase and a test phase. In the

learning phase, each face was presented to the participant for 15 seconds and rated

by the participant on each of four characteristics: attractiveness, distinctiveness,

honesty and likability, for a total study time of one minute. Thirty-two faces were

shown to each participant in the learning phase of the study. Of the 32 faces

presented to each participant in the learning phase of the study, 16 were presented
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as photographs and 16 were presented as illustrations. When all of the ratings were

complete, participants began the test phase of the study, in which they were shown

that same set of 32 faces that they had rated in the learning phase along with a set

of 32 new faces that they had not seen before, for a total of 64 faces. The faces were

intermixed in the testing phase. The participants’ task was to determine which faces

they had seen before (an old face) and which ones they had not seen before (a new

face). Of the 32 new faces, 16 were presented as photographs and 16 were presented

as line drawings. Out of the 32 old faces, the 16 that were presented as photographs,

8 of them changed modality (e.g. 8 of them were presented as illustrations in the

test phase) and 8 remained the same (e.g. 8 remained photographs). Throughout

this study, men and women always represented an equal number of faces in all

conditions.

A.3.4 Design

1. Participants were given a consent form to read and sign.

2. Participants were then told that they would be participating in a study that

would examine memory for faces.

3. Participants were then given a detailed description of the learning phase of

the study. Participants were then read the following verbal instructions: “You

are going to be presented with a series of faces, you will be asked to study

each face and will be tested on your memory for these faces later. The faces

you see are comprised of line drawings and photographs. For each face you

see, you will be asked to rate that face on its attractiveness, distinctiveness,

honesty and likability. Use the time the face is presented to study the face

carefully. After all of the ratings are complete, you will begin the test phase

of the study which I will explain then.”
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4. Participants were then given a sheet of paper with a rating scale from to five

for each of the four characteristics: attractiveness, distinctiveness, honesty

and likability.

5. After the participant had rated each of the 32 facial images for each of the

four characteristics, the participant was read the following instructions. “In

the second phase of the study, you will be shown those same faces along with

a set of new faces. You will be asked to determine which faces you see are old

faces (faces you were asked to rate) and which faces are new faces (faces you

were not asked to rate). Some of the faces that you were shown in the first

phase will be presented in the second phase in a different form. For example,

you may be shown this face in the ratings phase of the study (show photo)

and be shown this face in the test phase of the study (press any key to show

line drawing of same face). You would say that this face is old since it is

the same face, even though it is in a different format. It may also happen

in the opposite way, where you may be shown the line drawing in the first

phase, and be shown the photograph in the second phase, still this would be

considered and old face. Press the z key if you have seen the face before (old)

and the m key if the face is a new face. Make your decision as quickly as

possible. Do you have any questions?”

6. The participants were then presented with the 64 faces and made judgments

about which faces were new and which were new. The participants registered

their judgments via marked keys on the laptop computer keyboard.

In the learning phase of the study, 32 face images were shown to each participant.

The images were mixed and the breakdown is as follows:

16 gray-scale photographs

8 male

8 female
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16 illustrations

8 male

8 female

In the testing phase of the study, 64 face images were shown to each participant.

The images were remixed from the learning phase and the breakdown is as follows:

32 previously seen (old faces)

16 gray-scale photographs

8 that changed modality (photograph to illustration)

4 male

4 female

8 that remained in the same modality (photograph)

4 male

4 female

16 illustrations

8 that changed modality (illustration to photograph)

4 male

4 female

8 that remained in the same modality (illustration)

4 male

4 female

32 not previously seen (new faces)

16 gray-scale photographs

8 male

8 female
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 88 100 98.96 3.61
Train Illustration, Test Photograph 57 100 76.34 12.49
Train Photograph, Test Illustration 38 100 90.63 18.56
Train Photograph, Test Photograph 88 100 98.96 3.61

Table A.2. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained for sixty seconds with each image.

16 illustrations

8 male

8 female

A.3.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.2. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on photographs and tested on photographs were not statisti-

cally different (p = 1.0). The mean percentage accuracy of participants trained on

illustrations and tested on illustrations versus those of participants trained on illus-

trations and tested on photographs were statistically different at the α = 0.05 level

(p < 0.001). The mean percentage accuracy of participants trained on photographs

and tested on illustrations versus those of participants trained on photographs and

tested on photographs were not statistically different (p = 0.166). New photographs

were recognized as new faces 90 percent of the time and new illustrations were

recognized as new faces 93 percent of the time. The mean accuracy for recognizing

new faces from photographs was not significantly different from the mean accuracy

of recognizing new faces from illustrations (p = 0.464).
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A.4 Study 4: Illustrations versus Photographs with a

Fifteen Second Learning Time

A.4.1 Participants

In this study, 12 University of Utah undergraduates participated in the study.

All participants were tested individually, none knew of the hypothesis being tested.

A.4.2 Materials

The materials used in this study were the same as those reported in Ap-

pendix A.3.

A.4.3 Procedure

The procedure followed in this study was the same as that reported in Ap-

pendix A.3, with the exception that the time period that each stimulus image was

shown was shortened.

A.4.4 Design

The design of this study was the same as that reported in Appendix A.3.

A.4.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.3. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those

of participants trained on photographs and tested on photographs were not sta-

tistically different (p = 0.131). The mean percentage accuracy of participants

trained on illustrations and tested on illustrations versus those of participants

trained on illustrations and tested on photographs were statistically different at the
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 63 100 90.63 12.07
Train Illustration, Test Photograph 13 100 63.10 27.99
Train Photograph, Test Illustration 50 100 73.07 16.34
Train Photograph, Test Photograph 75 100 97.92 7.21

Table A.3. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained for fifteen seconds with each image.

α = 0.05 level (p = 0.010). The mean percentage accuracy of participants trained

on photographs and tested on illustrations versus those of participants trained on

photographs and tested on photographs were statistically different at the α = 0.05

level (p = 0.002). New photographs were recognized as new faces 81 percent of the

time and new illustrations were recognized as new faces 69 percent of the time. The

mean accuracy for recognizing new faces from photographs was not different from

the mean accuracy of recognizing new faces from illustrations (p = 0.583).

A.5 Study 5: Illustrations versus Photographs with a Five

Second Learning Time

A.5.1 Participants

In this study, 12 University of Utah undergraduates participated in the study.

All participants were tested individually, none knew of the hypothesis being tested.

A.5.2 Materials

The materials used in this study were the same as those reported in Ap-

pendix A.3.



61

A.5.3 Procedure

The procedure followed in this study was the same as that reported in Ap-

pendix A.4.

A.5.4 Design

The design of this study was the same as that reported in Appendix A.3.

A.5.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.4. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on photographs and tested on photographs were statistically

different at the α = 0.05 level (p = 0.029). The mean percentage accuracy of partic-

ipants trained on illustrations and tested on illustrations versus those of participants

trained on illustrations and tested on photographs were not statistically different

(p = 0.231). The mean percentage accuracy of participants trained on photographs

and tested on illustrations versus those of participants trained on photographs and

tested on photographs were statistically different at the α = 0.05 level (p = 0.001).

New photographs were recognized as new faces 72 percent of the time and new

illustrations were recognized as new faces 60 percent of the time. The mean

accuracy for recognizing new faces from photographs was not significantly different

from the mean accuracy of recognizing new faces from illustrations (p = 0.688).

A.6 Study 6: Learning Accuracy

A.6.1 Participants

In this study, 20 of the participants from Study 2, those who were presented

with illustrations or caricatures, took part.
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 13 100 69.32 25.84
Train Illustration, Test Photograph 25 88 57.58 20.57
Train Photograph, Test Illustration 13 100 65.58 23.66
Train Photograph, Test Photograph 63 100 88.64 13.06

Table A.4. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained for five seconds with each image.

A.6.2 Materials

Gray-scale photographs of the faces of six males and six females were used as

stimulus images in this study. An identical pilot study as in Study 1 was carried

out and the 12 facial illustrations and 12 caricatures derived from these photos

were all rated as good likenesses. All photos, facial illustrations and caricatures

were printed on a laser printer at a size of 6”x8” at 80 dpi and mounted on matting

board. Each face was randomly assigned a two-syllable first name from a list of the

most popular names of the 1970s (taken from www.cherishedmoments.com/most-

popular-baby-names.htm). In a separate pilot study this set of names was rated

for distinctiveness and names causing confusion were replaced.

A.6.3 Procedure

This study explored whether caricatures and illustrations result in a difference

in learning accuracy. After participating in Study 2, participants were shown 12

photographs in random order and were asked to recall the associated names.

A.6.4 Results

The number of incorrectly identified faces was recorded for each participant.

In both cases, either portrait or caricature training, the participants accuracy was

98%. Hence, at the α = 0.05 level, there was no measurable difference in accuracy

between participants trained with illustrations or caricatures.
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A.7 Study 7: Photographs versus Canny Edge Images

A.7.1 Participants

In this study, 12 University of Utah undergraduates participated. All partici-

pants were tested individually, none knew of the hypothesis being tested.

A.7.2 Materials

In this study, 64 face images from the AR Face Database [96], 32 males and

32 females, were used as stimulus. Using these 64 images from the AR Face

Database, 64 Canny edge facial images were created using an implementation of the

Canny edge detector. The images were presented to the participants as gray-scale

photographs or as Canny edge images. Other than the difference in stimulus images

the materials used in this study were the same as those reported in Appendix A.3.

A.7.3 Procedure

The procedure followed in this study was the same as that reported in Ap-

pendix A.3.

A.7.4 Design

The design of this study was the same as that reported in Appendix A.3, with

Canny edge images used instead of illustrations.

A.7.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.5. In this study, the mean percentage accuracy

of participants trained on photographs and tested on photographs versus those

of participants trained on CE images and tested on CE images were statistically
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Condition Min Max Mean Std. Dev.
Train Photograph, Test Photograph 62.5 100 85.42 11.72
Train Photograph, Test Canny edge 25 100 59.38 20.03
Train Canny edge, Test Photograph 0.0 71.2 38.82 25.17
Train Canny edge, Test Canny edge 50 100 77.1 16.7

Table A.5. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained with each image for fifteen seconds.

different at the α = 0.05 level (p = 0.002). The mean percentage accuracy of

participants trained on photographs and tested on photographs versus those of

participants trained on photographs and tested on CE images were not statistically

different (p = 0.751). The mean percentage accuracy of participants trained on

CE images and tested on photographs versus those of participants trained on CE

images and tested on CE images were statistically different at the α = 0.05 level

(p = 0.002).

A.8 Study 8: Photographs versus Caricature Generator

Images

A.8.1 Participants

In this study, 12 University of Utah undergraduates participated. All partici-

pants were tested individually, none knew of the hypothesis being tested.

A.8.2 Materials

In this study, 64 face images from the AR Face Database [96], 32 males and 32

females, were used as stimulus. Using these 64 images from the AR Face Database,

64 Caricature Generator images, 32 males and 32 females, were constructed with a

Java application of the Caricature Generator software. The images were presented

to the participants as gray-scale photographs or as Canny edge images. An identical

pilot study as in Study 1 was carried out and the 32 Caricature Generator images,



65

Condition Min Max Mean Std. Dev.
Train Photograph, Test Photograph 62.5 100 85.1 12.07

Train Photograph, Test Caricature Generator 30 80 38.5 18.8
Train Caricature Generator, Test Photograph 0.0 62.5 30.21 22.90

Train Caricature Generator, Test Caricature Generator 25 87.5 67.0 23.40

Table A.6. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained with each image for fifteen seconds.

16 males and 16 females, were all rated as being a good likeness. Other than the

difference in stimulus images the materials used in this study were the same as

those reported in Appendix A.3.

A.8.3 Procedure

The procedure followed in this study was the same as that reported in Ap-

pendix A.4.

A.8.4 Design

The design of this study was the same as that reported in Appendix A.3, with

Caricature Generator images used instead of illustrations.

A.8.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.6. In this study, the mean percentage accuracy

of participants trained on photographs and tested on photographs versus those

of participants trained on Caricature Generator images and tested on Caricature

Generator images were statistically different at the α = 0.05 level (p = 0.037).

The mean percentage accuracy of participants trained on photographs and tested

on photographs versus those of participants trained on photographs and tested on
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Caricature Generator images were statistically different (p < 0.001). The mean

percentage accuracy of participants trained on Caricature Generator images and

tested on photographs versus those of participants trained on Caricature Generator

images and tested on Caricature Generator images were statistically different (p =

0.001).

A.9 Study 11: Name-face Training with Feedback using

Twelve Faces

A.9.1 Participants

In this study, 12 University of Utah undergraduates participated in the study.

All participants were tested individually, none knew of the hypothesis being tested.

A.9.2 Materials

In this study, 12 face images from the AR Face Database [96], 6 males and 6

females, were used as stimulus. The images were presented to the participants as

gray-scale photographs or as illustrations. An identical pilot study as in Study 1

was carried out and the facial illustrations were all rated as being a good likeness.

Facial images were presented to the participants using a Macintosh Ibook laptop

computer at a distance of 24 inches. The background of the laptop monitor was set

to black and displayed images that subtended a visual angle of 12.9 degrees.

A.9.3 Procedure

This study was broken into four phases, a learning phase, a training phase and

two testing phases. In the learning phase, each face was presented to the participant

for five seconds. Twelve faces were shown to each participant in the learning phase

of the study. The faces were intermixed in between each phase. During the training

phase of the study participants were presented with each face with two names per

face for five seconds. The participants chose the name that they thought was correct
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by pressing a key on the laptop computer keyboard. Based on the validity of their

response the participant was then shown feedback image that read either correct or

incorrect for five seconds. During the training phase, each image was shown to each

participant twice. During the first testing session, participants were presented with

each face with two names in the same modality, illustrations or photographs, with

which the participant had been trained for five seconds. The participants chose

the name that they thought was correct by pressing a key on the laptop computer

keyboard. In the second training phase of this study, the participants received no

feedback about the correctness of their answers. Six participants were trained with

photos, and six with lines.

A.9.4 Design

1. Participants were given a consent form to read and sign.

2. Participants were then told that they would be participating in a study that

would examine memory for faces.

3. The participants were read the following instructions. “In this study, you will

be introduced to a set of people by seeing their face and their name presented

on the screen. After you study the faces once, you will be shown a face with

two names and you must try to choose the correct name. You will receive

feedback about whether you are correct or incorrect. After the training with

feedback, you will be presented with each face and two names and you should

try to choose the correct name. You will not receive feedback during this

test. Finally, you will see the same set of faces in a different modality (e.g.

illustrations if you originally studied photos). Try to choose the correct name

and again, you will not receive feedback. Choose the correct name by pressing

either the z key for the name on the left or the m key for the name on the

right. Each face is presented for a limited time, so try to answer while the
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face is on the screen. If you do not answer in time, just proceed to the next

face. Do you have any questions?”

4. Learning Session: Participants were then allowed to study 12 faces, shown to

them as either illustrations or photographs, for five seconds each.

5. Training Session: Participants were presented with each face with two names

for five seconds. Participants chose the name they thought was correct and

received feedback about the correctness of their answer. During the first

training session, each face was presented twice.

6. First Testing Session: Participants were presented with each face with two

names for five seconds. Participants chose the name they thought was correct.

During the first testing session, each face was presented twice.

7. Second Testing Session: Participants were presented with each face with two

names for five seconds. In this testing session, each face was presented in the

opposite modality as in the previous sessions. Participants chose the name

they thought was correct. During the second testing session, each face was

presented twice.

A.9.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.7. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on photographs and tested on photographs were not statisti-

cally different (p = 0.690). The mean percentage accuracy of participants trained

on illustrations and tested on illustrations versus those of participants trained on

illustrations and tested on photographs were not statistically different (p = 0.919).

The mean percentage accuracy of participants trained on photographs and tested

on illustrations versus those of participants trained on photographs and tested on

photographs were not statistically different (p = 0.431). The mean percentage
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Condition Min Max Mean Std. Dev.
Train Illst, Test Illst 55 92 80.87 12.99

Train Illst, Test Photo 50 100 80.41 13.40
Train Photo, Test Illst 50 92 77.78 13.37

Train Photo, Test Photo 50 100 83.14 13.73
Train Illst, 1st Test Illst, 2nd Test Photo 45 100 77.02 16.09

Train Illst, 1st Test Photo, 2nd Test Photo 42 100 80.93 16.41
Train Photo, 1st Test Illst, 2nd Test Illst 58 92 76.89 9.55

Train Photo, 1st Test Photo, 2nd Test Illst 56 100 80.64 12.59

Table A.7. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for eight methods of training and testing. In this table the
abbreviation Illst is used for the word illustration.

accuracy of participants trained on illustrations and tested on illustrations then

tested a second time on photographs versus those of participants trained on pho-

tographs and tested on photographs then tested a second time on illustrations

were not statistically different (p = 0.607). The mean percentage accuracy of

participants trained on illustrations and tested on illustrations then tested a second

time on photographs versus those of participants trained on illustrations and tested

on photographs then tested a second time on photographs were not statistically

different (p = 0.454). The mean percentage accuracy of participants trained on

photographs and tested on illustrations tested a second time on illustrations versus

those of participants trained on photographs and tested on photographs tested a

second time on illustrations were not statistically different (p = 0.450).

A.10 Study 12: Name-face Training with Feedback using

Thirty-Two Faces

A.10.1 Participants

In this study, 12 University of Utah undergraduates participated in the study.

All participants were tested individually, none knew of the hypothesis being tested.
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A.10.2 Materials

In this study, 32 face images from the AR Face Database [96], 16 males and 16

females, were used as stimulus. The images were presented to the participants as

gray-scale photographs or as illustrations. An identical pilot study as in Study 1

was carried out and the facial illustrations were all rated as being a good likeness.

Facial images were presented to the participants using a Macintosh Ibook laptop

computer at a distance of 24 inches. The background of the laptop monitor was set

to black and displayed images that subtended a visual angle of 12.9 degrees.

A.10.3 Procedure

This study was broken into two phases, a training phase and a testing phase. In

the learning phase, each face was presented to the participant for five seconds and

each face was presented three times. In the learning phase of the study, 32 faces

were shown to each participant. During the training phase of the study participants

were presented with each face with two names for five seconds and each face was

shown three times. The participants choose the name that they thought was correct

by pressing a key on the laptop computer keyboard. During the testing phase, the

participants were presented with each face with two names in the same modality,

illustrations or photographs, with which the participant had been trained, for five

seconds. The participants chose the name that they thought was correct by pressing

a key on the laptop computer keyboard or pressed another key if they thought that

this was a face that they had not previously seen. The modality, illustration or

photograph, and the order of presentation were mixed between the training and

testing phases of the study.

A.10.4 Design

1. Participants were given a consent form to read and sign.
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2. Participants were then told that they would be participating in a study that

would examine memory for faces.

3. The participants were read the following instructions. “I am going to intro-

duce you to a group of people by presenting their names with their faces.

Please try to remember the name of each person. You will have three study

periods where you see each of the faces. After the study period, you will be

presented with the faces with two different names, in same format as you saw

them (photos) a different format (illustrations), or you will see new faces that

you have not seen before. If the face is a new face, press the m key for new. If

the face is one that you have seen before (either as a photo or a line drawing),

choose the correct name by pressing either the z button for the left name, or

the x button for the right name. First, we will show you all of the faces three

times. You may rest between study sessions and press any key when you are

ready to begin again. Do you have any questions?”

4. Learning Session: Participants were then allowed to study thirty-two faces,

shown to them as either illustrations or photographs, for five seconds each.

Each face was shown three times.

5. Testing Session: Participants were presented with each face with two names

for ten seconds. Participants chose the name they thought was correct using

a key press on the laptop computer, or pressed another key to demonstrate

that they believed that they had not seen the face before.

A.10.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.8. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on photographs and tested on photographs were not statisti-

cally different (p = 0.256). The mean percentage accuracy of participants trained

on illustrations and tested on illustrations versus those of participants trained on
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 38 88 67.11 18.78
Train Illustration, Test Photograph 25 100 57.89 18.67
Train Photograph, Test Illustration 50 86 62.80 13.10
Train Photograph, Test Photograph 43 100 73.36 15.72

Table A.8. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing.

illustrations and tested on photographs were not statistically different (p = 0.168).

The mean percentage accuracy of participants trained on photographs and tested

on illustrations versus those of participants trained on photographs and tested on

photographs were not statistically different at the α = 0.05 level (p = 0.074).

New photographs were recognized as new faces 72 percent of the time and new

illustrations were recognized as new faces 61 percent of the time. The mean

accuracy for recognizing new faces from photographs was significantly different

from the mean accuracy of recognizing new faces from illustrations at the α = 0.05

level (p = 0.106).

A.11 Study 13: fMRI Pilot, Name-face Training without

Feedback using Twelve Faces and Intermixed Blocks

of Illustrations and Photographs

A.11.1 Participants

In this study, 12 University of Utah undergraduates participated. All partici-

pants were tested individually: none knew of the hypothesis being tested.

A.11.2 Materials

In this study, 12 face images from the AR Face Database [96], 6 males and 6

females, were used as stimulus. The images were presented to the participants as

gray-scale photographs or as illustrations. An identical pilot study as in Study 1

was carried out and the facial illustrations were all rated as being a good likeness.
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Facial images were presented to the participants using a Macintosh Ibook laptop

computer at a distance of 24 inches. The background of the laptop monitor was set

to black and displayed images that subtended a visual angle of 12.9 degrees.

A.11.3 Procedure

This study was broken into two phases, a training phase and a testing phase. In

the learning phase, each face was presented to the participant for five seconds and

each face was presented three times. In the learning phase of the study, 32 faces

were shown to each participant. During the training phase of the study participants

were presented with each face with two names for five seconds and each face was

shown three times. The participants choose the name that they thought was correct

by pressing a key on the laptop computer keyboard. During the testing phase, the

participants were presented with each face with two names in the same modality,

illustrations or photographs, with which the participant had been trained, for five

seconds. The participants chose the name that they thought was correct by pressing

a key on the laptop computer keyboard or pressed another key if they thought that

this was a face that they had not previously seen. The modality, illustration or

photograph, and the order of presentation were mixed between the training and

testing phases of the study.

A.11.4 Design

1. Participants were given a consent form to read and sign.

2. Participants were then told that they would be participating in a study that

would examine memory for faces.

3. The participants were read the following instructions. “I am going to intro-

duce you to a group of people by presenting their names with their faces.

Please try to remember the name of each person. You will have three study
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 67 100 82.51 12.03
Train Illustration, Test Photograph 42 100 72.78 17.71
Train Photograph, Test Illustration 55 92 81.04 11.36
Train Photograph, Test Photograph 55 100 79.55 79.55

Table A.9. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing.

periods where you see each of the faces. After the study period, you will be

presented with the faces with two different names, in same format as you saw

them (photos) a different format (illustrations), or you will see new faces that

you have not seen before. If the face is a new face, press the m key for new. If

the face is one that you have seen before (either as a photo or a line drawing),

choose the correct name by pressing either the z button for the left name, or

the x button for the right name. First, we will show you all of the faces three

times. You may rest between study sessions and press any key when you are

ready to begin again. Do you have any questions?”

4. Learning Session: Participants were then allowed to study thirty-two faces,

shown to them as either illustrations or photographs, for five seconds each.

Each face was shown three times.

5. Testing Session: Participants were presented with each face with two names

for ten seconds. Participants chose the name they thought was correct using

a key press on the laptop computer, or pressed another key to demonstrate

that they believed that they had not seen the face before.

A.11.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.9. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on photographs and tested on photographs were statistically
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different at the α = 0.05 level (p = 0.038). The mean percentage accuracy of

participants trained on illustrations and tested on illustrations versus those of

participants trained on illustrations and tested on photographs were not statistically

different (p = 0.549). The mean percentage accuracy of participants trained on

photographs and tested on illustrations versus those of participants trained on

photographs and tested on photographs were not statistically different (p = 0.710).

A.12 fMRI Study, Name-face Training without Feedback

using Twelve Faces and Intermixed Blocks of

Illustrations and Photographs

A.12.1 Participants

In this study, 12 University of Utah undergraduates participated. All partici-

pants were tested individually, none knew of the hypothesis being tested.

A.12.2 Materials

In this study, 12 face images from the AR Face Database [96], 6 males and 6

females, were used as stimulus. The images were presented to the participants as

gray-scale photographs or as illustrations. An identical pilot study as in Study 1

was carried out and the facial illustrations were all rated as being a good likeness.

A.12.3 Procedure

This study was broken into two phases, a training phase and a testing phase.

In both study and test phase faces are presented for 4.5 s, three faces per block,

alternating the control block (repeated faces) and the test block (new faces). In the

study phase, each face is presented twice. In the test phase, the first half presents

the faces in the modality that they were learned. The second half presents the faces

in the opposite modality. In the control periods, one male and one female face are

repeated and the same name is presented on each side of the face. Order of periods
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is illustration control, illustration test, photo control and photo test, repeated six

times. In the study phase, one name is presented with the face, in the test phase,

two different names are presented, and the participant picks the right or left name.

The participants chose the name that they thought was correct by pressing a key on

the Lumina keypad. During the testing phase, the participants were presented with

each face with two names in the same modality, illustrations or photographs, with

which the participant had been trained, for five seconds. The participants chose

the name that they thought was correct by pressing a key on the laptop computer

keyboard or pressed another key if they thought that this was a face that they had

not previously seen. The modality, illustration or photograph, and the order of

presentation were mixed between the training and testing phases of the study.

A.12.4 Design

1. Participants were given a consent form to read and sign.

2. Participants were then told that they would be participating in a study that

would examine memory for faces.

3. The participants were read the following instructions. “I am going to intro-

duce you to a group of people by presenting their names with their faces.

Please try to remember the name of each person. You will have three study

periods where you see each of the faces. After the study period, you will be

presented with the faces with two different names, in same format as you saw

them (photos) a different format (illustrations), or you will see new faces that

you have not seen before. If the face is a new face, press the m key for new. If

the face is one that you have seen before (either as a photo or a line drawing),

choose the correct name by pressing either the z button for the left name, or

the x button for the right name. First, we will show you all of the faces three

times. You may rest between study sessions and press any key when you are

ready to begin again. Do you have any questions?”
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 56 100 81.82 14.29
Train Illustration, Test Photograph 56 100 79.80 15.57
Train Photograph, Test Illustration 56 100 81.82 15.13
Train Photograph, Test Photograph 67 100 87.88 12.62

Table A.10. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing.

4. Learning Session: Participants were then allowed to study thirty-two faces,

shown to them as either illustrations or photographs, for five seconds each.

Each face was shown three times.

5. Testing Session: Participants were presented with each face with two names

for ten seconds. Participants chose the name they thought was correct using

a key press on the laptop computer, or pressed another key to demonstrate

that they believed that they had not seen the face before.

A.12.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.10. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on photographs and tested on photographs were not statisti-

cally different (p = 0.263). The mean percentage accuracy of participants trained

on illustrations and tested on illustrations versus those of participants trained on

illustrations and tested on photographs were not statistically different (p = 0.754).

The mean percentage accuracy of participants trained on photographs and tested

on illustrations versus those of participants trained on photographs and tested on

photographs were not statistically different (p = 0.399).
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A.13 Study 9: Illustrations versus Superportraits

A.13.1 Participants

In this study, 12 University of Utah undergraduates participated. All partici-

pants were tested individually, none knew of the hypothesis being tested.

A.13.2 Materials

In this study, 64 face images from the AR Face Database [96], 32 males and

32 females, were used as stimulus. Facial illustrations were created from the 64

images. The 64 facial illustrations, 32 males and 32 females, were all rated as being

a good likeness by five independent judges. Using these 64 facial illustrations, 64

superportraits were created. First a male and a female norm face feature grid

(FFG) were computed using the values of the FFGs for the male and female

facial illustrations respectively. The facial feature grid is covered in Section 2.5.

The difference between the norm face grid and the grid for each of the 64 facial

illustrations was scaled by scaled by twenty percent and the source illustrations

were warped correspondingly. Other than the difference in stimulus images the

materials used in this study were the same as those reported in Appendix A.3.

A.13.3 Procedure

The procedure followed in this study was the same as that reported in Ap-

pendix A.4.

A.13.4 Design

The design of this study was the same as that reported in Appendix A.3, with

superportraits used instead of photographs.
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 60 100 89.98 14.48

Train Illustration, Test Superportrait 50 100 81.98 16.28
Train Superportrait, Test Illustration 52 88 75.39 12.28

Train Superportrait, Test Superportrait 75 100 92.48 10.49

Table A.11. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained for fifteen seconds with each image.

A.13.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.11. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on superportraits and tested on superportraits were not statis-

tically different (p = 0.505). The mean percentage accuracy of participants trained

on illustrations and tested on illustrations versus those of participants trained on

illustrations and tested on superportraits were not statistically different (p = 0.267).

The mean percentage accuracy of participants trained on superportraits and tested

on illustrations versus those of participants trained on superportraits and tested

on superportraits were statistically different (p < 0.001). New superportraits were

recognized as new faces 83 percent of the time and new illustrations were recognized

as new faces 76 percent of the time. The mean accuracy for recognizing new

faces from superportraits was not significantly different from the mean accuracy

of recognizing new faces from illustrations (p = 0.675).

A.14 Study 10: Illustrations versus Caricatures

A.14.1 Participants

In this study, 12 University of Utah undergraduates participated. All partici-

pants were tested individually, none knew of the hypothesis being tested.
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A.14.2 Materials

In this study, 64 face images from the AR Face Database [96], 32 males and

32 females, were used as stimulus. Facial illustrations were created from the 64

images. The 64 facial illustrations, 32 males and 32 females, were all rated as being

a good likeness by five independent judges. Using these 64 facial illustrations, 64

caricatures were created. The caricatures were created using the free hand warping

techniques described in Section 2.6 and were similar to those shown in Figure 2.7.

Other than the difference in stimulus images the materials used in this study were

the same as those reported in Appendix A.3.

A.14.3 Procedure

The procedure followed in this study was the same as that reported in Ap-

pendix A.4.

A.14.4 Design

The design of this study was the same as that reported in Appendix A.3, with

caricatures used instead of photographs.

A.14.5 Results

Descriptive statistics for the rate of learning over the four learning and testing

conditions are shown in Table A.12. In this study, the mean percentage accuracy

of participants trained on illustrations and tested on illustrations versus those of

participants trained on caricatures and tested on caricatures were not statistically

different (p = 0.505). The mean percentage accuracy of participants trained on

illustrations and tested on illustrations versus those of participants trained on

illustrations and tested on caricatures were not statistically different (p = 0.267).

The mean percentage accuracy of participants trained on Caricatures and tested
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Condition Min Max Mean Std. Dev.
Train Illustration, Test Illustration 50 100 86.46 15.50
Train Illustration, Test Caricature 50 100 77.98 18.48
Train Caricature, Test Illustration 38 88 73.81 13.39
Train Caricature, Test Caricature 75 100 90.48 9.49

Table A.12. This table shows the minimum, maximum, and mean percentage of
correctly identified faces for the four methods of training and testing. Participants
were trained with each image for fifteen seconds.

on illustrations versus those of participants trained on caricatures and tested on

caricatures were statistically different (p < 0.001). New caricatures were recognized

as new faces 76 percent of the time and new illustrations were recognized as new

faces 83 percent of the time.



APPENDIX

ANALYZING FMRI STUDY DATA

This section discusses the analysis of raw data from an fMRI scan. The goal

of the analysis is to determine those regions in the fMRI dataset in which signal

changes occur upon stimulus presentation. The analysis of fMRI data falls into

two parts. First the raw data are analyzed to produce an image showing regions

of activation. Second, some level of significance must be calculated so that the

probability of producing such a result purely by chance is suitably low [12]. This

information can be used in turn to determine brain activation for a given stimulus.

A volumetric dataset is represented as a three-dimensional discrete regular grid of

volume elements (voxels) [77]. In the case of fMRI a voxel is a quantum unit of

volume with an associated numeric value representing emitted energy.

The analysis of fMRI data can be broadly divided into three stages [44]:

1. Spatial Processing: including signal processing, data realignment, and smooth-

ing.

2. Statistical Analysis.

3. Inference and Presentation.

Pre-processing steps are applied to the data to improve the detection of ac-

tivation events. These include: registering the images to correct for participant

movement during the study, and smoothing the data to improve the signal to noise

ratio. Next, the statistical analysis is carried out to detect voxels in the dataset

that show a response to stimulus. Finally, the activation images can be displayed.

In addition, the statistical confidence placed in the result can be reported.
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B.1 Spatial Processing

A number of pre-processing steps can be carried out on the raw fMRI dataset

before statistical analysis of the data. Each of these pre-processing steps is indepen-

dent of the others and each offers benefits as well as a computational time penalty

that may be on the order of hours.

B.1.1 Raw Data Manipulation

The raw time data from the fMRI scanner requires Fourier transformation to

form images. One type of artifact that can occur in fMRI is the Nyquist, or N/2

ghost [23, 24, 71]. This artifact is caused by acquiring odd or even echoes under

the opposite gradient. In fMRI analysis, ghosting artifacts can cause a number of

problems. Ghosting in activated regions could lead to apparent activation appearing

outside the head. Effects that are more serious occur if the artifact changes with

time. Movement of the participants’ head causes the fringes of overlapping ghost

and image areas to change dramatically. In this case, even small displacements

may appear as large signal changes. Because participant motion is often correlated

with stimulus, the changes of the interference pattern can show up in the statistical

analysis as BOLD activation due to stimulus response. Correction for N/2 ghost

artifact can be carried out on the raw time data by changing the phase angle

between real and imaginary data points of alternate lines [24, 71]. The extent of

correction required can be determined by adjusting the phase angle until the N/2

ghost in the first image in the set is minimized. The same correction is then applied

to every image in the fMRI data set [24, 71].

Two data reducing steps can be performed that will cut down the number

of calculations that need to be carried out in the analysis phase. Experimental

pre-scans or saturation scans, which ensure that recovery effects have reached a

steady state, can be removed from the beginning of the data set. In addition, the

scan matrix size can be reduced so that it covers only the brain.

Changes in the global blood flow to the brain, as well as instability in the

scanner hardware, can cause the mean intensity of the images to vary with time.
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Such fluctuations mean that the response to each stimulus is not identical and

reduces the power of any statistical test. In order to minimize this effect each

image can be scaled so that it has an intensity mean equal to a pre-determined

value such as the global intensity mean of the data set. Since there are fluctuations

in image intensity caused by external interference, which are independent of the

variation in the true image intensity, it is necessary to exclude these regions from

the calculation of the image mean. Regions to exclude are chosen by the user before

normalization.

B.1.2 Motion Correction

Changes in fMRI signal intensity over time occur due to participant head motion

and can be confused with signal changes due to brain activity. Restrained and

cooperative participants will still show displacement of up to a millimeter in the

course of a study [48]. Therefore, the analysis of fMRI data starts with a series of

spatial transformations to realign the data in order to undo the effects of participant

movement during scanning. These transformations reduce variance in the time-

series voxel data induced by movement or shape differences. In order to assign an

observed response to a particular brain structure the fMRI data must conform to

a known anatomical space. The fMRI data are therefore transformed using linear

or nonlinear warps into a standard anatomical space in order to report in a frame

of reference that can be related to other studies. Finally, the data are spatially

smoothed before analysis in order to normalize the distribution of error in the

fMRI dataset.

Realigning the volumetric fMRI dataset is a two-step process. First, each scan

in the time series is co-registered to a target. Either the first scan in the time series

or the average of all scans in the time series are generally used as the reference

scan. In order to perform co-registration, a series of rigid-body transformations

are estimated by minimizing a function of the difference between the current and

reference scans. The six rigid-body transformations are translations in the x, y,

and z directions and rotations about the x, y, and z-axes. A least squares solution
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yielding estimations of the six rigid-body transformation parameters is calculated

for each scan. The rigid-body transformations are computed using a first order

approximation of the Taylor expansion of the effect of movement on signal intensity

using spatial derivatives of slices of the fMRI dataset. This technique allows for an

iterative least squares solution corresponding to a Gauss-Newton search [45, 145].

In the second part of the realignment process the rigid-body transformations

are applied to the fMRI dataset by re-sampling the dataset according to the spatial

transformation estimated in the first stage of the realignment process. The numeric

value corresponding to fMRI signal intensity of each voxel in the transformed

dataset is determined from the intensity of surrounding voxels in the original

dataset. The simplest method of image re-sampling is nearest neighbor re-sampling.

In nearest neighbor re-sampling the value of the closest voxel is taken as the value of

the transformed voxel. This approach has the advantage of preserving the original

intensities, but can severely degrade the dataset. In order to realign an fMRI

dataset with subvoxel accuracy, the spatial transformations must involve fractions

of a voxel. It is therefore necessary to re-sample the fMRI dataset at positions

between the centers of voxels. This requires an interpolation scheme to estimate

the intensity of a voxel, based on the intensity of its neighbors [57]. The rigid-body

transformations are applied by re-sampling the fMRI data using trilinear, sinc, or

cubic spline interpolation.

Trilinear interpolation is the simplest form of interpolation for three-dimensional

data. The interpolated value is computed by a linear combination of the values of

the eight neighboring voxels [66]. However, Trilinear interpolation can introduce

sampling errors because some high frequency information can be removed from the

volume dataset [106].

The ideal scheme for transforming band-limited MR images without introduc-

ing artifacts is to perform the translations and rotations in Fourier space. This

approach is referred to as Fourier interpolation and has been implemented in two

dimensions [41]. The image space method that gives the closest results to Fourier

interpolation is a full sinc interpolation using every voxel in the image to calculate
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the new value at a single voxel [73]. Although sinc interpolation is the theoretically

optimal convolution kernel for band-limited images, it may not be the ideal kernel in

terms of application. The fMRI volumetric data have finite spatial support, which

implies that it is not possible for the sampling frequencies to satisfy the Nyquist

criterion. Consequently, it is impossible to retrieve the original fMRI data exactly

from the resulting samples by means of sinc interpolation [98]. Another problem

with sinc interpolation is that the sinc function has infinite support. Therefore,

it cannot be computed in practice for most medical imaging applications [98].

Accurate realignment of the fMRI volumetric data is the slowest procedure in fMRI

data analysis [57]. Because of the computational burden of performing a full sinc

interpolation, in practice it is necessary to limit the extent of the sinc function [59].

The truncated sinc function is commonly implemented using an 11-voxel Hamming

window sinc function [57].

The results of a number of studies show that spline interpolation constitutes

the best trade-off between accuracy and computational cost in medical imaging

applications [85, 86, 98, 106, 135]. Splines constitute an elegant framework for deal-

ing with interpolation and discretization problems [135–138]. Splines are widely

used in computer-aided design and computer graphics, but have been until recently

neglected in medical imaging. Most forms of spline fitting (interpolation, least

squares approximation, smoothing splines) can be performed efficiently using re-

cursive digital filters [135]. In addition, the multi-resolution properties of splines

make them amenable to constructing wavelet bases and computing image pyramids

both of which have medical imaging applications.

Realignment algorithms based on the co-registration approach can achieve ac-

curacy in the range between fifty and one hundred microns [48, 50, 76]. In fMRI

however, there may be additional, movement related, nonlinear sources of error.

Friston et al. show, in extreme cases, up to ninety percent of the variance in an

fMRI dataset can be accounted for by the effects of movement after realignment [48].

These residual errors are due to movement effects that cannot be modeled with a

linear affine model. These nonlinear effects include: participant movement between
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slice acquisition, interpolation artifacts [57], nonlinear distortion due to magnetic

field inhomogeneities [5] and spin excitation history effects [48].

B.1.3 Smoothing

Any reduction in the random noise in the data improves ability of a statistical

technique to detect activation [104]. Therefore, spatially and temporally smoothing

the fMRI data improves the validity of statistical inferences by increasing the

signal-to-noise ratio. However, smoothing will reduce the resolution in each image,

therefore a balance must be achieved between improving the signal-to-noise ratio

and maintaining functional resolution in the fMRI data. There is no straightforward

answer to the question of which is the best smoothing width to use in the analysis

of an fMRI data set.

Improvements in the signal-to-noise ratio can be made by smoothing in the

temporal domain as well as in the spatial domain. The BOLD contrast effect and

the rate at which the fMRI signal changes in an active brain region are limited

by blood flow. Hence, temporal smoothing with a filter, which approximates the

hemodynamic response function, will improve the signal-to-noise ratio of the fMRI

dataset. A three-dimensional Gaussian filter of width 2.8 seconds is reported to be

a good approximation to the hemodynamic response function [46].

B.2 Statistical Analysis

The most straightforward way to analyze fMRI data is to subtract the mean

off data from the mean on data. The disadvantage of this brute force subtraction

technique is that small movements of the participants’ head can drastically change

the intensity of voxels at the boundaries of the dataset. Such an artifact can give

rise to a ring of apparent activation near the brain boundaries. A t-test can be

used to reduce the activation ring effect and to yield a statistic that can be tested

against the null hypothesis that no signal is present. The t-test is used to reduce

movement artifacts by giving high t-scores to large differences with small standard

deviations, and low t-scores to small differences with large standard deviations. An
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image or dataset where values are assigned based on the output of a statistical test

is commonly called a statistical parametric map.

Statistical parametric mapping (SPM) is used to identify functionally specialized

brain regions and is the most prevalent approach in characterizing functional brain

anatomy. SPM is a voxel-based approach, which allows an analyst to make com-

ments about brain response to a given stimulus. SPM can be made with different

experimental designs. However, fMRI data lends itself to a signal processing

perspective [44].

A commonly used technique is correlation coefficient mapping. In this tech-

nique, the time response of the activation to the stimulus is predicted, using prior

knowledge of the hemodynamic response, and a correlation coefficient for each voxel

over time is calculated [47]. The major disadvantage of this technique is that it is

particularly sensitive to motion artifacts. Other methods that have been used in-

clude Fourier transformation, ( identifies pixels with a high Fourier component [84]),

principal component analysis, (locates regions in the brain that show synchronous

activity using eigenfunctions [11]), clustering techniques, (compute synchrony using

iterative methods [43]), and various non-parametric tests that do not require the

assumption of normality in the signal distribution [67]. All these have strengths and

weaknesses. The necessary criteria for a technique to be successful are sensitivity,

simplicity, speed, and statistical validity.

B.3 Inference and Presentation

After computing a statistical map, it is necessary to display the regions of

activation and an estimate of the reliability of the result. If the distribution of

the statistic, under the null hypothesis of no activation, is known then statistical

tables can be used to threshold the image. After thresholding, only those pixels

with a strong stimulus correlation are shown.

After thresholding to display only the active brain regions for a given stimulus,

the active regions are superimposed on background images to enable anatomical

localization. If the fMRI data contains a high-resolution component, this can be
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used for base images. Better contrast may come from some inversion recovery

images that show only white matter or gray matter. Figures B.1, B.2, B.3 and

B.4 on the following four pages show examples of the active brain regions from the

fMRI study superimposed on a high-resolution average brain image. These images

are of the same data shown in Figure 3.11 of Chapter 3.
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Figure B.1. These images show active brain regions from the fMRI study during
the training phase using photographs as stimulus superimposed on a high-resolution
average brain image. These images show thresholded activation during the training
phase of the fMRI study with photographs as the stimulus (encoding photographs).
These images are computed over all of the participants in the fMRI study. These
images can be compared to the image in the upper left of Figure 3.11 of Chapter 3
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Figure B.2. These images show active brain regions from the fMRI study during
the testing phase using photographs as stimulus superimposed on a high-resolution
average brain image. These images show thresholded activation during the testing
phase of the fMRI study with photographs as the stimulus (decoding photographs).
These images are computed over all of the participants in the fMRI study. These
images can be compared to the image in the upper right of Figure 3.11 of Chapter 3.
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Figure B.3. These images show active brain regions from the fMRI study during
the training phase using illustrations as stimulus superimposed on a high-resolution
average brain image. These images show thresholded activation during the training
phase of the fMRI study with illustrations as the stimulus (encoding illustrations).
These images are computed over all of the participants in the fMRI study. These
images can be compared to the image in the lower left of Figure 3.11 of Chapter 3.
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Figure B.4. These images show active brain regions from the fMRI study during
the testing phase using illustrations as stimulus superimposed on a high resolution
average brain image. These images show thresholded activation during the testing
phase of the fMRI study with illustrations as the stimulus (decoding illustrations).
These images are computed over all of the participants in the fMRI study. These
images can be compared to the image in the lower right of Figure 3.11 of Chapter 3.
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