An
Intelligent
Chinese Checkers
Playing Program

ARTIFICIAL INTELLIGENCE
?ﬁinese Checkers

Developed By
Ashish Gupta
Ashish Gupta

URL: http://www.cse.iitd.ernet.in/~csu98130/Al/projed

CONTENTS

SUE A

Description of the Game
Rules of the Game
Heuristics Used
Optimizations Done
Results

Description of the game

Chinese Checkers is played on a board shaped like a six-pointed star, with one player's
home at each star point. Unlike chess, which is played on aflat board, Chinese Checkers
is played with round marbles on a board with holes, where the marbles rest. The holes are
connected by lines forming a hexagona pattern. The players are only allowed to move
their marbles along these lines.

Rules of the Game

Two to six players can play the game, each having ten same-colored marbles. At the start
of the game, the player's marbles are in the ten holes of the star point that has the same
color as his marbles. The goal is to move dl marbles of your color from your starting
point to the star point on the opposite side of the board, here cdled the goa. A marble
can move by rolling to ahole next to it or by jumping over one marble, of any color, to a
free hole, along the lines connecting the holes in a hexagonal pattern. The player can
make severa jumps in a row, but only one roll. The player cannot both roll the marble
and jump with it at the same turn. When the player has moved ore of his marbles, the
turn passes on to the next player. Unlike chess, you never remove any game pieces from
the board.

Heuristics Used

Adding Intelligence to the program

1) Sinceit is alowed to make several jumps in a row, it is strategicdly important to
make it possble to do so. By building structures for the marbles to jump on, it is
possible to quickly move a marble to the opposite side of the board. The ability to
recognize the opportunity to make a long jump is criticd for playing a good game.

2) It is also important not to leare any marbles behind when the others move over the
board. Those marbles will need more turns to cross the board than if they had been
moved with the others, since their opportunities to make long jumps are fewer.

The two players are placed symmetricaly around the board. Only the two-player game
has been studied, one human against the cmputer as well as computer vs the computer.
The computer plays with the red marbles darting at the top of the board and the human
opponent plays with the opposite green marbles.

A Layered Approach

We have developed the heuristics using a layer by layer approach. We first
added a simple heuristic to the Static Evaluation Function (SEF). Then added
additional functionality to each heuristic to add to its intelligence.

The Heuristics used in the Program

We have added various kinds of heuristics to the program based on the above
observations and added some unique features to make heuristics perform Dbetter.
Following isthe list of heuristics used:

1) Random

2) Vertical Displacement

3) Vertical Displacement and Horizontal displacement

4) Vertical Displacement, Horizontal displacement and Split

5) Vertical Displacement, Horizontal displacement, split and last piece move.

See the program for details.

Heuristic Details

1. Random

In this heuristic, the computer makes a move randomly without taking into
consideration the current board configuration. It can be pretty hard to beat
this heuristic also, as the random player may not leave its triangle at all and
thus denying the chance to the opponent to occupy its winning triangle !

2. Vertical Displacement

This heuristic does the most obvious in the strategy for winning i.e. trying to
maximize the vertical jumps of any piece.

It generates all moves with minimax algorithm and then sums up the vertical
distance for its pieces and adds them up.

It also adds up the vertical distance of each of the opponent’s pieces.

Then it uses the following SEF (static evaluation function) to make the best
move :

TOta ISe[f - TOta lOpponent

Caveats

The player does not know anything about the horizontal displacement. Thus it
can get stuck in corners and may not be able to move into its triangle easily
and may even oscillate. This problem is corrected in the next heuristic

3. Vertical and Horizontal Displacement

In this heuristic we also consider the horizontal positions of the pieces in
deciding the next move. The main idea is that it is best to play in the middle of
the board and the opportunity is maximum to make the best move (more

chances to jump and so on).

This keeps the player’s pieces in the middle and also makes it very easy to
move to its destination triangle .

The formula is :
Wt. Factor * Vertical Displacement + Horizontal Displacemt

The Wt. Factor decides how much importance is to be given to keep the pieces
in the middle of the board compared to jumping vertically.

4. Vertical/Horizontal Displacement with Split

This is a new idea, which makes it very easy for the heuristic to win towards
the end of the play. The idea is that when the pieces start reaching its
destination triangle, then we also need to provide good opportunity for other
pieces to come in the destination triangle and the pieces already in the
destination triangle should facilitate their entry into the destination triangle.

But the previous strategy of keeping the pieces in the middle may hinder other
pieces from entering the triangle. So in this heuristic, we move the pieces to
the edges of the destination triangle once they have moved in, to create space
for other pieces to come in. We do this by assigning more weights to the edges
then the middle of the destination triangle. This is shown below.

000

0
' ' Edges are given more

weightage than the middle

Destination triangle

5. The Above Strategy + Back Piece moving strategy

One problem with which the previous heuristics suffer from is that some pieces
are left at the backend of the board and they have to move one by one at the
end thus requiring more number of moves to win. In this heuristic, we give
more weightage to the moves where the back pieces move forward than the
front pieces. This produces the desired effect, i.e. no lone pieces are left
behind on the board and pieces move in clusters. This further reduces the
number of moves required to win. This heuristic is very strong and it is very
difficult to beat it.

Optimization

List of Optimization

1) Look at only those nodes which show some progress.

In this we generated only those moves for the minimax algorithm, which
advance towards the goal state and rejected others. This results in significant
improvement in speed.

2) Taking shortest depth first in case of a win.

In case two paths results in a win (same value of SEF) , then we choose the
path which takes us to the goal faster.

3) Expand the node with maximum value to improve alpha - beta pruning.

4) Sort the generated nodes to increase the gain from alpha-beta pruning.

Significant improvements are observed when the above optimizations are
implemented.

Results

Metrics used to study

We studied various metrics to evaluate the optimizations like:

1) Number of nodes generated

2) Total number of nodes generated

3) Average number of nodes generated

4) Time taken for each move (in milliseconds)
5) Total time till now

6) Average time per move

Comparison of Heuristics

Player 1 vs Heuristic 2 Heuristic 3 Heuristic 4 Heuristic 5
Player 2
X 4

© Heuristic2 | 3 | | 5

~ Heuristic3 3 | X | 4 | 5

 Heuristic4 4 | 4 | X | 5

© Heuristic5 5 | 5 | 5 | X
Who Wins

We seethat as the intelligence improves, the computer moves better and better. It is
very difficult for ahuman player to beat the computer with Heuristic 4 or 5.

Optimization Results

1) Optimization of generation of moves

Player 1 iz computer
Hewr : WH

Optimization : Mo

Mode : Mone

Pliez - 3

Modes : 11432

Total Hodes : 2136551
Average Modes : 46735
Time : 270

Tatal Tirme : 54230
Average Time : 1153

Player 2 iz computer
Hewr : WH

Optimization : Yes
Mode : Mone

Pliez - 3

Modes : 235

Total Hodes : 536335
Average Modes ; 12487
Time : B0

Tatal Tirme : 15110
Average Time : 321

From the stats we see, that Player 2 is optimized. We can see the
difference in the average number of nodes generated is 4 : 1. And it is also
much faster than the other player. (321 ms vs 1153 ms average move time)

Player 1 iz computer
Hewr : WHSBack

O ptirmization : Yes
Mode : None

Flies : 3

Modes : 106

Total Modes : 550319
Ayerage Modes - 10802
Time : 0

Tatal Tirme : 11160
Average Time: 218

2) Best Move first: Improving Alpha-Beta Pruning

Player 2 iz computer
Hewr : WHSBack

O ptirmization : Yes
Mode : Best

Flies : 3

Modes : 124

Total Modes : 217675
Average Modes © 4353
Time : 0

Tatal Tirme : 3240
Average Time : 164

The player with the best move first generated much less number of nodes
due to heavy alpha-beta pruning (4353 vs 10802). It is faster also.

3) Sorting the generated moves: Improving Alpha-Beta Pruning

Player 1 iz computer
Heur : WHSplit
Optimization : Ves
Mode : Mone

Pliez - 3

MWodes : 72

Total Modes : 655333
Ayerage Modez : 111716
Time: 0

Total Tirme : 13620
Average Time : 315

Player 2 iz computer
Heur : WHSplit
Optimization : Ves
Mode : Sort

Pliez - 3

MWodes : B0

Total Modes - 188771
Ayerage Modes : 3254
Time: 0

Total Tirme : 3070
Average Time : 156

The player 2 first sorts all of its moves. We see that this results in heavy alpha-
beta pruning. (3254 vs. 11116 average number of nodes). It is also very fast

(156 ms vs. 315 ms on the average)

4) Best move vs. Sorted Moves

Player 1 iz computer
Heur : WHSplit
Optirization : Yes
Mode : Best

Flies : 3

Modes | BB

Total Modes : 262053
Average Modes : 2229
Time: 0

Tatal Tirme : 12500
Average Time : 106

Player 2 iz computer
Heur : WHSplit
Optirization : Yes
Mode : Sort

Flies : 3

Modes : 26

Total Modes : 193441
Average Modes | 1667
Time: 0

Tatal Tirme : 3400
Average Time : 81

We see that sorting of moves results in more alpha-beta pruning than the
best move first approach. The tradeoff is the Order n-sorting algorithm vs.
the order n best move first. Still sorting performs better as it results in
more alpha-beta pruning and thus decreases in number of nodes generated.

Other Assignments Done

1) Tic-Tac-Toe
2) A* Algorithm
3) K-Means Clustering Algorithm

